Evaluating a Process-Based Mitigation Wetland Water Budget Model

Matthew A. Gloe

T.M. Thompson W.C. Hession W.L. Daniels

Overview

- Mitigation Failures
- Current Method of Mitigation Design
- Objectives
- Field Site
- Integrated Pierce Method Model
- MODFLOW-2005 model
- Results
- Conclusions

wetlands impacted or destroyed? mitigate!

- Mandated by law
 - Must: Restore Create → Enhance or Preserve

hydrology + vegetation + soils = wetland

Incorrect water levels are the leading cause of failed mitigation wetlands

- South Florida Water District 62.5% of projects exhibited hydrological problems
- Most significant project design problem identified – <u>improper water levels</u>

Erwin (1991)

currently, mitigation sites are designed to simplify the water budget by creating a perching system

hydraulic resistance due to vegetation can influence water levels

In densely vegetated wetland systems, outflow is determined, all or in part, by hydraulic resistance due to vegetation

Overall project objectives...

- 1. Determine the accuracy of water level predictions by a Pierce water balance method model, and a process-based MODFLOW model
- 2. Evaluate seasonal effects in model performance
- 3. Determine the sensitivity of models to select input parameters

the modeling site...

Cedar Run Wetland Bank

Completed in October 2001 by Wetland Studies and Solutions Inc.

Pre-mitigation

Post mitigation

Biological Systems Engineering

water level data were collected in the southern cell via USACOE standard observation well installations

60 30 0 60 Meters

weather data were collected using an onsite weather station

- Daily precipitation
- Daily temperature

the water budget models...

MODFLOW-2005

Invent the Future

Biological Systems

the wetland was represented as...

the wetland was represented as...

Vegetation (10-20 cm)

Surface / Vegetation (0-10 cm)

Sub-surface

vegetation conductivities were calculated from community collections and measurements of momentum absorbing area (maa)

hydraulic conductivity, k

	<i>K</i> (m/s)	Spring/Summer	
	Zone 1	Zone 2	Zone 3
0-10 cm	2.67	1.49	2.26
10-20 cm	2.55	1.50	2.22
20-30cm	2.40	1.42	2.22

	<i>K</i> (m/s)	Fall/Winter	
	Zone 1	Zone 2	Zone 3
0-10 cm	2.38	2.00	2.63
10-20 cm	2.79	1.84	2.82
20-30cm	2.96	2.82	2.42
			3

Uirginia Tech

Integrated Perce Method (IPM) Thornthwaite's PET Monthly Time Step

Integrated Perce Method with FAO P-M (IPM-FAO) FAO Penman-Monteith Reference Crop PET Monthly Time Step

MODFLOW-2005 (Modflow)

FAO Penman-Monteith Reference Crop PET Daily Time Step Uncalibrated

the modeling results...

Virginia Tech

annual error statistics

					Relative
	Intercept	p-value	Slope	p-value	Error
Integrated Pierce (Thornthwaite's)	2.28	0.51	0.22	0.03	38.39
Integrated Pierce (FAO-56 P-M)	-13.99	0.0005	0.95	1.8e-06	12.48
MODFLOW-2005	-3.95	0.47	0.42	2.7e-05	10.37

Biological Systems Engineering

growing season error statistics

sensitivity analysis

revisiting the objectives...

MODFLOW-2005 most accurately predicted water levels on an annual basis determine the accuracy of water level predictions by a Pierce water balance method model, and a process based MODFLOW model MAE = 14.8 cmNSE = 0.42

seasonality affects modeling results. IPM-FAO most accurately predicted water levels during the growing season

evaluate seasonal effects in model performance

MAE = 11.2 cm NSE = 0.48

Poiani and Johnson (1993) – Calibrated predictions within 10cm of observed 75% of time

Su and others (2000) – calibrated wetland model, standard error = 19cm

IPM-FAO and MODFLOW-2005 showed sensitivity to changes in ET. MODFLOW-2005 was not significantly determine the server in the select input parameters

as such, ET estimation methods need to be carefully chosen, calculated with site-specific data

implications

> Results will guide future wetland water budget modeling, especially wetland mitigation related

- ET critical for estimation
- Improved pre-construction modeling will potentially increase mitigation success

> While IPM-FAO better seasonally, MODFLOW has advantages

- Daily time step
- Assess design variances (soils, topography)

future work

- > Improved ET estimation
- > Wetland Crop Coefficients
- > k calculation improvements for wetlands with higher veg. density
- > Incorporation of local groundwater hydrology!

Questions?

Piedmont Wetlands Research Program

Thank you: Tess Thompson, Cully Hession, Lee Daniels, Candice Piercy, Laura Teany, Karen Hall, Denton Yoder

mgloe@vt.edu

