Specifying Pervious Concrete

Philip Kresge

National Resource Director

National Ready Mixed Concrete Association

Think Outside the Box

Infiltration Systems

Developed in 1970's

Franklin Institute, Philadelphia, PA

Infiltration System

- Subgrade compacted
 92 95%
- Filter fabric
- Underlying, opengraded stone bed
 - 6" to 24" clean aggregate base
- Porous pavement surface
 - 4" to 6"

- Water drains through pavement into stone bed and infiltrates slowly into underlying soil mantle
 - 0.1 0.5 in/hr acceptable
 - Total drawdown time should not exceed 5 days

Why Specify Pervious Concrete?

Environmental Issues

- Water Quality
 - First-Flush Pollution
 Mitigation
 - Groundwater Recharge
 - Flood Prevention / Management

First Flush

- First 1" of rain
 - Contains contaminants
 - EPA requires collection and treatment prior to release
 - USGS study Austin, TX
 - High concentration of polycyclic aromatic hydrocarbons (PAH)
 - Attributed to asphalt parking lot runoff
 - Runoff from asphalt-based sealants 10 times higher
 - Runoff from coal-tar based sealants 65 times higher
 - Source:
 - http://water.usgs.gov/nawqa/asphalt_sealers.html

First Flush

- Pervious concrete pavement reduces runoff
 - Eliminates first flush
 - Captured by void structure
 - Minimization of PAH
- Soil chemistry and biology will naturally treat water
 - Oil drips and other automotive pollutants are "attacked" by naturally occurring soil microbes

Your Drinking Water

US EPA - Clean Water Act

EPA Storm Water Phase II Final Rule (EPA 2000)

- Reduce or eliminate runoff
- "Treatment" of Pollutants (Percolation)
- Groundwater and aquifer recharge
- Minimize Flooding

Sustainable Development

Green Building Rating System

For New Construction & Major Renovations

(LEED-NC)

Version 2.2

Highlighted Credits

Sustainable Sites

Credit 6.1 & 6.2: Stormwater Design

Credit 7.1: Heat Island Effect, Non-Roof LEED.NC LEED-NC Version 2.2 Registered Project Checklist

Sustainable Sites

14 Possible Points

Prereq 1	Construction Activity Pollution Prevention	Required
Credit 1	Site Selection	1
Credit 2	Development Density & Community Connectivity	1
Credit 3	Brownfield Redevelopment	1
Credit 4.1	Alternative Transportation, Public Transportation Access	1
Credit 4.2	Alternative Transportation, Bicycle Storage & Changing Rooms	1
Credit 4.3	Alternative Transportation, Low Emitting & Fuel Efficient Vehicles	1
Credit 4.4	Alternative Transportation, Parking Capacity	1
Credit 5.1	Site Development, Protect or Restore Habitat	1
Credit 5.2	Site Development, Maximize Open Space	1
Credit 6.1	Stormwater Design, Quantity Control	1
Credit 6.2	Stormwater Design, Quality Control	1
Credit 7.1	Heat Island Effect, Non-Roof	1
Credit 7.2	Heat Island Effect, Roof	1
Credit 8	Light Pollution Reduction	1

Stormwater Design Credit 6.1 & 6.2

- EPA Storm Water Phase II Final Rule (EPA 2000)
- Reduce or eliminate runoff
- "Treatment" of Pollutants (Percolation)
- Groundwater and aquifer recharge
- Minimize Flooding

Highlighted Credits

Water Efficiency

Credit 1.1 & 2.2: Water Efficient Landscaping

Credit 3.1 & 3.2 Water Use Reduction LEEDINC

LEED-NC Version 2.2 Registered Project Checklist

<< enter project name >>

<< enter city, state, other details >>

Y96 7 NO

Susta	inable Sites 14 Points
Prereg 1	Construction Activity Pollution Prevention Required
Credit 1	Site Selection 1
Credit 2	Development Density & Community Connectivity 1
Credit 9	Brownfield Redevelopment 1
Credit 4.1	Alternative Transportation, Public Transportation Access
Credit 4.2	Alternative Transportation, Bicycle Storage & Changing Rooms
Credit 4.3	Alternative Transportation, Low-Emitting and Fuel-Efficient Vehicles 1
Credit 4.4	Alternative Transportation, Parking Capacity 1
Credit 5.1	Site Development, Protect of Restore Habitat
Credit 5.2	Site Development, Maximize Open Space
Credit 6.1	Stormwater Design, Quantity Control

Water Efficiency

5 Possible Points

Credit 1.	1 Water Efficient Landscaping, Reduce by 50%	1
Credit 1.	2 Water Efficient Landscaping, No Potable or No Irrigation	1
Credit 2	Innovative Wastewater Technology	1
Credit 3.	1 Water Use reduction, 20% Reduction	1
Credit 3.	2 Water Use reduction, 30% Reduction	1

second course course course and the first first first first first first first		
Pre	q 2 Minimum Energy Performance	Required
Pre	q 3 Fundamental Refrigerant Management	Required
Cre	1 Optimize Energy Performance	1 to 10
Cre	12 On-Site Renewable Energy	1 10 3
Cre	19 Enhanced Commissioning	
Cre	4 Enhanced Refrigerant Management	1
Cre	15 Measurement & Verification	1
Cre	t6 Green Power	1

Design Considerations

Pervious Concrete (20% +- Void)

Recharge Bed (40% Void Stone)

Non-woven Geo-textile

Well Draining Soil (1/2" + per. hr.)

Pervious Concrete (20% +- Void) Recharge Bed (40% Void Stone)

WAWW. NRMCA ORG

Non-woven Geo-textile

Poorly Draining Soil

Pervious Concrete (20% +- Void)

Recharge Bed (40% Void Stone)

Non-woven Geo-textile

Poorly Draining Soil

Hydrologic Analysis Software

Pervious Concrete: Hydrological Design and Resources

Hydrologic Software

- May be used as a design aid
- Provide preliminary designs for engineers
- Assist permit-granting agencies in verifying conformity to established stormwater runoff constraints

Passive Mitigation

- Used to reduce quantity of impervious surface by replacing w/ pervious
- Can capture much, if not all, first flush
- Not intended to offset excess runoff from adjacent impervious surfaces

Active Mitigation

- Designed to maintain total runoff of a site at some specified level
- Must accommodate runoff from a much larger area
- Used when pervious concrete system is intended to capture a sizeable portion of the runoff from other areas
 - Buildings
 - Impervious pavements
 - Traffic islands
 - Buffer zones

Active Mitigation

System Performance Goals

- Have the pervious concrete system capture all of the stormwater resulting from rain falling on pavement surfaces (passive)
- Have the pervious concrete system capture not only the rain that falls directly on the pavement, but also from directly connected sections of impervious areas (active)
- Have the pervious concrete system reduce total runoff to a target value
 - Based on conditions of the site
 - Established by engineer and/or permitting agency

How the program works

- Estimates the volume of rainfall on the site in an appropriate design storm
- Estimates the volume of stormwater stored and infiltrated
- Estimates potential runoff
- Thereby determining if capacity of pervious concrete system is adequate

Navigating Through the Hydrologic Software

	-	Data Input Sheer	
	(All and a second secon		
		Baallea alliana : Perus Takla anne fens Cell Is Cell Project Details	
	nomo	Project: Home Depot	
	2 123 2	Designer: MZ	
	5	Date Run: 11/16/05	
	Data Input Shoo	L	
		Pervious concrete	
		Thickness 6 in	
		Surface area 43,560 sq ft	
	Reculto	Porosity 157%	
		Tkickpoor	
	[HELP]		
	5		
	Instruction	Ponding limit 🛛 👘 in	
	≥. Bais£all		
	lafa, Coro	Exfiltration rate 0.010 ¹ in/hr	
	Norther	Imperuious surface	
		Surface area 43.560 so ft	
		Off-site drainage	
		Area 🚺 sq ft	
		24-hr Precipitation 3.5 in	
		Location Suwanee GA	
		Return period 2 yr	
		Decige Aire	
		Target CN 72	
		After you have completed entering the abuve data, click	
		the Harry Button:	
		Baroltr	
and the second second			
all c			CAORG
NDMPA			
MAMLA			

Thickness Design Guidelines

- **■** 6"
- Light-duty / standardduty parking lots
- Residential driveways

8"

- Residential streets
- Commercial driveways
- Heavier-duty parking lots

- 1		Data Input Sheet	
- 1	Colum-	Bandle and Simone : Person Talk Is more from Cell In Cell	
	Home	Project Details	
	fa	Project: <u>Home Depot</u>	
	21000	Designer: MZ	
l		Date Run: 11/16/05	
l	Daita Input Shoot		
l		Pervious concrete	
I		Thickness 6 in	
I		Surface area 43,560 sq f	ft
I	P. and Sa	Porosity 15 %	
l	ind and	Gravel base	
J	de an	Thiokness 6 in	
I	(Marks)	Porosity 40 %	
I	- I		
l	Instruction	Ponding limit 0 in	
l	Ba is fall		
l	lefe, maria	Exhitration rate U.UIU] in/h	٦ſ
	Norskarr	Imperuious surface	
l		Surface area 43.560 cm 6	64
l		Off-site drainage	
l		Area III so f	FF
l		CN 0	• •
l			
		24 ks Proi-it-stand 2 P is	
l		Location Sumares GO	
l		Beturn period 2 ur	
l		i interant perioral al 31	
l		Desian Aim	
l		Target CN 72	
l			
l		After you have completed entering the above data, cl	lick
I		the Res Butten:	
н			
		Dis .	

ан), 1997

MA NRMCA

CAORG

 Ponding limit allows for use of area above pavement surface, contained within confines off curb, to be included in calculations of temporary storage capacity

- 1		Data Input Sheet	
- 1	Colum-	Bandle and Simone : Person Talk Is more from Cell In Cell	
	Home	Project Details	
	fr-	Project: <u>Home Depot</u>	
	21000	Designer: MZ	
l		Date Run: 11/16/05	
l	Daita Input Shoot		
l		Pervious concrete	
I		Thickness 6 in	
I		Surface area 43,560 sq f	ft
I	P. and Sa	Porosity 15 %	
l	ind and	Gravel base	
J	de an	Thiokness 6 in	
I	(Marks)	Porosity 40 %	
I	- I		
l	Instruction	Ponding limit 0 in	
l	Ba is fall		
l	lefe, maria	Exhitration rate U.UIU] in/h	٦ſ
	Norskarr	Imperuious surface	
l		Surface area 43.560 cm 6	64
l		Off-site drainage	
l		Area III so f	FF
l		CN 0	• •
l			
		24 ks Proi-it-stand 2 P is	
l		Location Sumares GO	
l		Beturn period 2 ur	
l		i interant perioral al 31	
l		Desian Aim	
l		Target CN 72	
l			
l		After you have completed entering the above data, cl	lick
I		the Res Butten:	
н			
		Dis .	

ан), 1997

MA NRMCA

CAORG

Exfiltration Rates

Malcolm says;

In sandy soils, use 0.5 to 1.0 in/hr
In silty soils, use 0.1 in/hr
In clayey soils, use 0.01 in/hr

Calculating for Underground Stormwater Chambers

- Assume volume of tanks is 100% void
- Stone base is 40% void
- Calculate weighted average void for tanks and stone base
- Enter this number as stone base void

- 1		Data Input Sheet	
- 1	Colum-	Bandle and Simone : Person Talk Is more from Cell In Cell	
	Home	Project Details	
	fr-	Project: <u>Home Depot</u>	
	21000	Designer: MZ	
l		Date Run: 11/16/05	
l	Daita Input Shoot		
l		Pervious concrete	
I		Thickness 6 in	
I		Surface area 43,560 sq f	ft
I	P. and Sa	Porosity 15 %	
l	ind and	Gravel base	
J	de an	Thiokness 6 in	
I	(Marks)	Porosity 40 %	
I	- I		
l	Instruction	Ponding limit 0 in	
l	Ba is fall		
l	lefe, maria	Exhitration rate U.UIU] in/h	٦ſ
	Norskarr	Imperuious surface	
l		Surface area 43.560 cm 6	64
l		Off-site drainage	
l		Area III so f	FF
l		CN 0	• •
l			
		24 ks Proi-it-stand 2 P is	
l		Location Sumares GO	
l		Beturn period 2 ur	
l		i interant perioral al 31	
l		Desian Aim	
l		Target CN 72	
l			
l		After you have completed entering the above data, cl	lick
I		the Res Butten:	
н			
		Dis .	

ан), 1997

MA NRMCA

CAORG

Active or Passive Mitigation?

- Calculate impervious surface on-site
- Calculate adjacent pervious area runoff
- Calculate adjacent impervious area runoff

	2 1 2 2 1 1 100 30			100	- 1 ar - 4		
- p							
SCS C	urve Numbers for	Variou	is Cove	er Conc	litions		
Cover Description		Hydrolog	ie Soll Gra	up 		~	
5		A	в			1mpervious	
Developed urban areas							
Open space							
iheet	Poor condition	68	79	85	B9		
	(<50% grass)						
	Fair condition	49	59	79	B4		
	(50-75 % grass)						
	Good condition	39	51	74	80		
	(>50% grass)						
Impervious areas							
	Pavement, roofs	98	99	98	99		
9	Gravel	76	85	89	91		
н н	Dit	72	62	87	B9		
Urban districts							
10	Commercial and	89	92	94	95	85	
	business Industrial	04	00	0.	- m	20	
B 11 81	Industrial	81	68	91	93	72	
Residential areas	day lot aire)						
	1/9 pero down hausac	77	B5	an	P1	Ø5	
/e	condoe)	1.6	00	30	32	00	
5	1/4 acra	國1	75	83	B7	38	
	1/E acre	67	77	81	B5	30	
	1/2 acra	54	70	an		25	
	1 acre	61	58	79	B4	20	
	2 acres	46	85	77	B2	12	
	Agricultural areas						
Pasture, grassland	0						
	Pour	AR.	79	ae	L 89		
	11						

- 1		Data Input Sheet	
- 1	Colum-	Bandle and Simone : Person Talk Is more from Cell In Cell	
	Home	Project Details	
	fa	Project: <u>Home Depot</u>	
	21000	Designer: MZ	
l		Date Run: 11/16/05	
l	Daita Input Shoot		
l		Pervious concrete	
I		Thickness 6 in	
I		Surface area 43,560 sq f	ft
I	P. and Sa	Porosity 15 %	
l	ind and	Gravel base	
J	de an	Thiokness 6 in	
I	(Marks)	Porosity 40 %	
I	- I		
l	Instruction	Ponding limit 0 in	
l	Ba is fall		
l	lefe, maria	Exhitration rate U.UIU] in/h	٦ſ
	Norskarr	Imperuious surface	
l		Surface area 43.560 cm 6	64
l		Off-site drainage	
l		Area III so f	FF
l		CN 0	• •
l			
		24 ks Proi-it-stand 2 P is	
l		Location Sumares GO	
l		Beturn period 2 ur	
l		i interant perioral al 31	
l		Desian Aim	
l		Target CN 72	
l			
l		After you have completed entering the above data, cl	lick
I		the Res Butten:	
н			
		Dis .	

ан), 1997

MA NRMCA

CAORG

Storm Event

- Usually 2-yr event
- Suggest checking 5-yr event
- Program pre-loaded with data from US Weather Service

			_		_		
8월 Die Dait Ne	w <u>I</u> nsert F <u>o</u> rnat <u>I</u> pols	Data <u>Wi</u> ndow Help					Type a question for help = 8
) 6 6 K 6 6 1	·ワー Σ-2↓ 100(🛞 🚆 🤅 Arial	• 10	- B /	비르클로로	\$ % > <u>22</u> + <u>3</u> 4 + <u>A</u> +
A1 -	ß						
	Rainfall	Information	1				
Analysis Start	24 Hour Precipitatio	n for 2-yr and 10-y	/r storms				
	for all 50 state	s measured in inc	hes				
Data Input Sheet	Alabama	2-year	10-year				
	Birmingham, AL	4.11	5.97				
	Montgomery, AL	4.55	6.64				
	Mobile, AL	5.89	9.12				
Doguito	Huntsville, AL	3.87	4.43				
Results	Tuscaloosa, AL	4.41	6.36				
	Hoover, AL	4.25	6.28				
and the second	Dothan, AL	4.78	7.20				
all the	Decatur, AL	3.84	4.52				
Mile.	Florence, AL	3.91	5.45				
Rainfal Info	Troy, AL	4.62	6.95				
A	Alasha	7	10				
	Alaska	z-year	10-year				
	Anchorage, AN	1.50	2.50				
SCS Curve	Nome, AK	1.50	2.20				
Numbers	Failbanks, AN	1.24	Z. IU 5. DD				
	Nodiak, AN	2.50	2.00				
HELPI	Juneau, AK	250	+.00				
U	Arizona	2-year	10-year				
нер	Flagstaff, AZ	1.88	2.69				
	Alpine, AZ	2.01	2.83				
	Kingman, AZ	1.58	2.62				
<							>
Ready							NUM
🛃 start 🔰 🖉	5 🞯 🗐 🤲 😳 Inbox - M	krosoft Out 🔯 Hyd	rology Software t	. 🗍 Adobe Reader	- [Hon	🔤 Nicrosoft Excel - Perv	🤨 🕲 🐉 8:65 AN

- 1		Data Input Sheet	
- 1	Colum-	Bandle and Simone : Person Talk Is more from Cell In Cell	
	Home	Project Details	
	fr-	Project: <u>Home Depot</u>	
	21000	Designer: MZ	
l		Date Run: 11/16/05	
l	Daita Input Shoot		
l		Pervious concrete	
I		Thickness 6 in	
I		Surface area 43,560 sq f	ft
I	P. and Sa	Porosity 15 %	
l	ind and	Gravel base	
J	de an	Thiokness 6 in	
I	(Marks)	Porosity 40 %	
I	- I		
l	Instruction	Ponding limit 0 in	
l	Ba is fall		
l	lefe, maria	Exhitration rate U.UIU] in/h	٦ſ
	Norskarr	Imperuious surface	
l		Surface area 43.560 cm 6	64
l		Off-site drainage	
l		Area III so f	FF
l		CN 0	• •
l			
		24 ks Proi-it-stand 2 P is	
l		Location Sumares GO	
l		Beturn period 2 ur	
l		i interant perioral al 31	
l		Desian Aim	
l		Target CN 72	
l			
l		After you have completed entering the above data, cl	lick
I		the Res Butten:	
н			
		Dis .	

ан), 1997

MA NRMCA

CAORG

Design Aim

- Input target curve number
- Represents the permissible runoff
- Useful where post-construction CN must meet certain design criteria with regard to pre-construction CN

- 1		Data Input Sheet	
- 1	Colum-	Bandle and Simone : Person Talk Is more from Cell In Cell	
	Home	Project Details	
	fr-	Project: <u>Home Depot</u>	
	21000	Designer: MZ	
l		Date Run: 11/16/05	
l	Daita Input Shoot		
l		Pervious concrete	
I		Thickness 6 in	
I		Surface area 43,560 sq f	ft
I	P. and Sa	Porosity 15 %	
l	ind and	Gravel base	
J	de an	Thiokness 6 in	
I	(Marks)	Porosity 40 %	
I	- I		
l	Instruction	Ponding limit 0 in	
l	Ba is fall		
l	lefe, maria	Exhitration rate U.UIU] in/h	٦ſ
	Norskarr	Imperuious surface	
l		Surface area 43.560 cm 6	64
l		Off-site drainage	
l		Area III so f	FF
l		CN 0	• •
l			
		24 ks Proi-it-stand 2 P is	
l		Location Sumares GO	
l		Beturn period 2 ur	
l		i interant perioral al 31	
l		Desian Aim	
l		Target CN 72	
l			
l		After you have completed entering the above data, cl	lick
I		the Res Butten:	
н			
		Dis .	

ан), 1997

MA NRMCA

CAORG

Project: Home Depot		Statements Person
Decigner: MZ		CRMCA.
•		
Voluments we is blacked and issue is		THE ASSOCIA
Voluee chown in ted one computed nota See caution sets, below	ite.	Bas data WHE/00
Genfiguration		24-hr Prostpitation 3.3 in
Porviona concrete Thisteene	6 i.	Location <u>Your Location</u> Referencesiend <u>9</u> 1 au
⊽unitses anas	4 3,3 6 D 2 9 R	
Perceity	15 2	Durings mire
Grovel base Thiskness	1 1.	Targai CN Ta Allaardda araaff 443 is
Forcolls	40.3	
Paradian timb	pl:-	
Exfictstion rate	O.TOD in the	
Imporvious curraco		
Sarfeet area Citizate distance	43.560] og R	
Anna Anna Anna Anna Anna	0 mg 6	
CN .	D	
Summary of results		
Effective CIM	72	Rapid T Ponding
E stana text i na soft ()s dia poj Konstiduite prizement reposi	1.32 18	Infliteration Zana
Narsher of keyr of an office	0	rates Pantos
Maa posiding dapih	0.0 %	Constat
Available coorage often iki, ki	5 2	<u>*</u>
Available oborage after 5 days	100 3	
Staga afrer 5 dege	O.D in	V Graval
Andri Manasal Green bar alkaris, a sengelakat y	D hr	
		Controlling
INTERNATIONAL PERSONAL		eefitration V Bolt calibre
To tel droised surface area	87.120 pgR	14 M
Storage capacity, pervious concrete	0,2:67 curt	
25 maga napanèng gravai kaon	6,9 0 B	
Storage capacity, posiding	D cuft	Even of the Table Kine S.
Total claim sator clairage	0,075 cuit	
Total prode volume	25.010 out	Al lei els te reanon e al . Por màstica às a rea tod te as a chierre a tori al for Internation y reappe. La protecta des anticia de site desta destinations de trades de services de services de s
Sticke collitation volume	17.287 cuft	haider.
Tipkal reactif (pearflow)	8,113 ouit	
Selection activation of a Date Sectory of	D mafe	Continue This spea adekant is intended for study

MCA ORG

1.000

Freeze-Thaw

Iowa State University

- In conjunction with:
 - Center for Transportation Research and Education
 - National Center for Concrete Pavement Technology
- Prepared mixes with varying aggregates, admixtures, etc.

	Aggregate		Unit Weight (lb/CY)						
Mix	Type	Size	PC	Silica Fume	Latex	G	s	Water	Water/Binder
12	River Gravel	#4	571	-	-	2500	168	154	0.27
10	River Gravel	#4	525	-	52.5	2700	-	116	0.27
8	River Gravel	#4	520	-	52	2500	168	114	0.22
13	River Gravel	#4	542.5	-	28.5	2500	168	130	0.24
14	River Gravel	#4	485.4	-	85.6	2500	168	107	0.22
19	River Gravel	3/8"	571	-	-	2500	168	154	0.27
5	River Gravel	3/8"	522.5	27.5	-	2700	-	149	0.27
11	River Gravel	3/8"	520	52	-	2500	168	114	0.27
4	Limestone	3/8"	522.5	27.5	-	2700	-	149	0.27
16	Limestone	3/8"	571	-	57.1	2500	168	126	0.22
17	Limestone	3/8"	600	-	60	2500	200	132	0.22

3400 psi @ 7 days, 3800 psi @ 28 days for this mix Permeability is over 300 gallons per hour

 Study conducted by NRMCA Results available at www.nrmca.org

Freeze-Thaw Resistance of Pervious Concrete

NRMCA • 900 Spring Street, Silver Spring, MD 20910 • www.nrmca.org • (888) 84NRMCA

May 2004

Freeze-Thaw Resistance

- Depends on saturation level
- Avoid critical saturation
 - Design
 - Infiltration System
 - Secret of success is to provide the water a place to go
 - Maintenance
 - Cleaning, as needed, in severe climates

Shelter Systems Ltd. Westminster, MD

- Pavement used as staging area for completed truss systems
- Required heavy duty pavement
 - 30 to 40 trucks per day

Shelter Systems Ltd. Westminster, MD

- R/M adjusted mix
- Added 500 lbs. fine agg. per CY
- Placed with ABG dual-compaction paver
- Rolled with small static roller
- Flexural strength 650 psi (7 days)

Shelter Systems Ltd. Westminster, MD

- Approximately 8 acres of pavement
- Mix design can accommodate 80" of rain per hour
- 10 times intensity of 100 year rainfall event!

ACI 522 Pervious Concrete Guide to Specification

ACI 522 – Pervious Concrete

- Specification Guide Document in Final Review
- Performance specification
- Provides Guidelines for
 - Quality Assurance
 - Materials
 - Testing
 - Placement

Section 1.6: Quality Assurance

1.6.1.1 Contractor qualification - Unless otherwise approved by Architect/Engineer, Contractor shall provide evidence of employment of one (1) NRMCA certified Pervious Concrete Craftsman who must be on site, overseeing each placement crew, during all concrete placement, or the contractor shall provide evidence of employment of five (5) NRMCA certified Pervious Concrete Technicians, who have received hands-on training in the construction of pervious concrete pavements, and who must be on site, working as members of each placement crew, during all concrete placement, or, with the approval of Architect/Engineer, contractor may provide written evidence of project experience and proficiency in successfully completing pervious concrete pavement construction, and submit evidence of completion of a pervious concrete craftsman certification program.

NRMCA Recommended Addendums to Specification

Section 1.6: Quality Assurance

1.6.1.2 Concrete Producer qualification – Unless otherwise approved by Architect/Engineer, ready mixed pervious concrete shall be produced and provided by an NRMCA Certified plant. If, rather than ready mixed pervious concrete, a volumetric mobile mixer is used to produce the pervious concrete, the mixer(s) must conform to the standards of the Volumetric Mixer Manufacturers Bureau (VMMB), to be verified by a current VMMB conformance plate affixed to the volumetric mixer equipment.

Section 1.6: Quality Assurance

1.6.1.2 *Concrete Producer qualification* – Unless otherwise approved by Architect/Engineer, ready mixed pervious concrete shall be produced and provided by an NRMCA Certified plant. If, rather than ready mixed pervious concrete, a **volumetric mobile mixer** is used to produce the pervious concrete, the mixer(s) **must conform to the standards of the Volumetric Mixer Manufacturers Bureau (VMMB),** to be verified by a current VMMB conformance plate affixed to the volumetric mixer equipment.

Section 1.5; Submittals

1.5.3.2 *Pre-Placement Conference* – A mandatory preplacement conference will take place including at a minimum, the architect, engineer, general contractor, pervious concrete contractor, concrete supplier, and field testing agency. As a guide for the meeting, a copy of the document Checklist for the Concrete Pre-Construction **Conference** (co-published and available from the National Ready Mixed Concrete Association (NRMCA), 900 Spring Street, Silver Spring, MD, (301) 587-1400 or the American Society of Concrete Contractors (ASCC), 2025 South Brentwood Boulevard, St Louis, MO, (314) 962-0210), will be used to review all materials and personnel qualifications, concrete production, preparation, placing, curing, and testing procedures.

NRMCA

Specifying Pervious Concrete

- ACI 522 Guide Document
- PCA/NRMCA Pervious
 Concrete Pavements
- PCA/NRMCA Hydrologic Software
- www.PerviousPavement.org

Pervious Concrete Contractor Certification Program

NATIONAL READY MIXED CONCRETE ASSOCIATION

Test releases in

Pervious Concrete Contractor Certification

NEWCA Publication (REPORT

Questions?

Thank You!

Philip Kresge National Resource Director pkresge@nrmca.org