Rainwater harvesting and Irrigation management

Presentation for the VAPSS Fall Technical Meeting Low Impact Development-Current Practice and Research Needs Wetland Studies & Solutions Inc., Gainesville VA

> David Sample, Ph.D., P.E., D.WRE Assistant Professor Biological Systems Engineering Based at the Occoquan Watershed Monitoring Lab Manassas, VA

Biological Systems Engineering

Outline

Introduction

The Hydrologic Cycle and Water Demand

- Water Balance
- Runoff and Stormwater Quality
- Estimated Water Needs
- Initial Screening Examples
- RHS Design for Runoff Control in Virginia
 - Function
 - Design using Cistern Spreadsheet/Runoff Reduction
- Simulation/Operation of RHS Systems
 - Schematic
 - Operational Policies
- Conclusion

- CEE-OWML has been monitoring the Occoquan watershed in NOVA for over 35 years
 - Tom Grizzard, CEE
 - Glenn Moglen, CEE
 - Adil Godrej, CEE
 - David Sample, BSE
- Campus
 - CEE Department
 - BSE Department
 - Center for Watershed Studies

The Hydrologic Cycle and Water Demand

Hydrologic Cycle

- Precipitation
- Infiltration

- Runoff
- Recharge
- Evapotranspiration

ation Soil Moisture

Precipitation

Averages 40-42 inches/year (1016-1067 mm)

Source: National Atlas, at www.usgs.gov

Infiltration

Infiltration function of:

- Soil types/porosity
- Soils hydraulic properties
- Soil moisture content
- Vegetation

Evapotranspiration

- Temperature Based Methods
 - Bowen
 - Thornthwaite
- More Accurate Method-Modified Penman-Monteith (Allen 1998)
- Function of Radiation, vapor pressure, wind speed, air temperature

Runoff

- Depends upon:
 - Rainfall intensity
 - Antecedent moisture
 - Density of vegetation (interception, ET)
 - Imperviousness
 - Slope

Recharge

- Recharge-Saturated Zone
- Process is extremely slow-faster in coastal areas
- Often calculated as a calibration parameter

Source: USGS - GROUND WATER ATLAS of the UNITED STATES: Delaware, Maryland, New Jersey, North Carolina, Pennsylvania, Virginia, West Virginia, HA 730-L

Soil Moisture Storage

- "Leaky Reservoir"
- Field Capacity
- Wilting Point
- Readily Available Water (RAW)
- Total Available Water (TAW)

Source: Allen, R.G., Pereira, L.S., Raes, D., and Smith, M. (1998) Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements. United Nations Food and Agricultural Organization (FAO), Irrigation and Drainage Paper 56, Rome, Italy.

Water Budget

$$\Delta S = P - R + I - ET - D$$

Estimating Demand/Water Needs

- Indoor Use
 - Potable Use
 - Nonpotable Use
 - Toilet flushing
 - Clothes washing
- Outdoor use
 - Active Irrigation
 - Passive Irrigation

Grimmond and Oke 1986

Rainwater Harvesting/Cisterns (RR)

- Captures impervious runoff
- Underground/Above
- Reuse-can be Outdoor or indoor
- Supplements water supply
 - Volume benefitsmaximize if managed
- Variable Removal (runoff reduction only)

Source: Virginia Rainwater Harvest Manual, at <u>www.CabellBrandCenter.org</u> and WSSI/Wetland Studies and Solutions, Inc., at <u>http://www.wetlandstudies.com</u>.

Preliminary Screening Model

Average Monthly Water Budget

Screening Results

RHS Design for Runoff Control in Virginia

Configurations

1. Interior Non-Potable Demand Year-Round

2. Interior Non-potable Demand year-round, seasonal Irrigation only

Source: VDCR (2009) Draft Virginia DCR Stormwater Design Specification No. 6, Rainwater Harvesting, Version 1.2.

More Configurations

- 3. Interior Non-potable Demand year-round, Seasonal Outdoor Demand, On-site Stormwater Disposal during non-irrigation months
- Interior Non-potable Demand year-round, Onsite Stormwater Disposal Year-round

Source: VDCR (2009) Draft Virginia DCR Stormwater Design Specification No. 6, Rainwater Harvesting, Version 1.2.

Even More Configuraitons

- Year round or Seasonal Demand with Dedicated Constant Year-Round Drawdown with On-site Infiltration
- On-site Infiltration for Groundwater Recharge, No Re-use of Stored Water

Source: VDCR (2009) Draft Virginia DCR Stormwater Design Specification No. 6, Rainwater Harvesting, Version 1.2.

Calculate Demand Met

Source: VDCR (2009) Draft Virginia DCR Stormwater Design Specification No. 6, Rainwater Harvesting, Version 1.2.

Calculate Runoff Reduction Credit

Source: VDCR (2009) Draft Virginia DCR Stormwater Design Specification No. 6, Rainwater Harvesting, Version 1.2.

for RSHED

IES

IRGINIA

TECH

Steps

- Calculate Incremental Design Volumes
- Complete Design of System
- Enter Final Volumes/Credits into Runoff Reduction Spreadsheet
 - Water Quality Volume Credit
 - Roof Area treated
- Evaluate with other BMPs to Assess WQ Status

Simulation/Operation of RHS Systems (Work in Progress)

LID Design/Implementation Science Museum, Richmond

- Bioretention
- Permeable Pavement
- Rainwater Harvesting
- Vegetated Roof

Clermont Elementary, Alexandria

Development of Rainwater Harvesting System Rule Curves

- RHS is currently given a 40% runoff credit (but only for 50% of runoff volume)
- Objective: Use simulation model and duration analysis to develop generalized rule curves for WQ credits

Collaboration with T. Younos

Operational Dynamics

- Reserve Target
- Time of Emptying
- Dead Storage

Summary

Screening Tool

- Average Climatology
- Water Budget
- Center for Watershed Protection Method
 - Water Budget
 - Interevent Time Probabilities
- Proposed Rule Curves
 - Water Budget
 - Simulation
 - Duration Analysis

Questions?

Contact Info:

David Sample, <u>dsample@vt.edu</u> (703)361-5606x128