Building Basic and Advanced Model Scenarios in WetBud

Kerby Dobbs

Overview

- 1. Intro
- 2. Building weather station data set
- 3. Basic Scenarios
- 4. Advanced Scenarios

Wetland/Project Site

Wetland/Project Site

WetBud Basic Model – Mass Balance

WetBud – Advanced Version

Building a weather station data set

Weather station data includes:

- Precipitation
- Weather (for ET calculations)
- Solar (for ET calculations)
- Additional data
 - Clear sky insolation index data (Penman ET)
 - Daylight length data (Thornthwaite ET)

Building a weather station data set

Create weather station record

🕈 Creati	e New Stati	on H H -				×	Export
Search by Code	_	by Location	General Precipitatio	n Info Manageme	nt Help		
· · · · · · · · · · · · · · · · · · ·			Station Code - Site C	ode (WMO ID)			
0 I F	luca		724030	1		2	Show Station on Map
Code	WBAN	Location A					
Dealland	-	Great Dismai NVVR	WBAN ID Number	COOP-ID		Call Sign	
-Dealora	-	Back Rev National V	93738	448903		IAD / KIAD	
00440305	-	Dack bay National W	Latitudo	Longitudo			
00446306	-	Suffalk Lake Kilbu	20.00	Longitude	77.00	A NCE	C Station Locator
00440132	-	Winterpack 4W/ VA LL	30.00		77.00		
137/0	13740	Dichmond VA	State			Import Station	
720498	99999	CHESTERFIELD AIR	VA	•		Import Station	nieader monnation 🗡
722692	99999	Warrenton VA	- manage of				
723075	13769	Oceana VA	Location				
723075	13769	OCEANA NAS	Sterling, VA - IAD				
723080	13737	Norfolk VA					
723085	13750	NORFOLKINS	Data Available From	Data Availa	able To		
723260	13891	Knoxville Municipal		•	•		
724006	03701	CHESAPEAKE RGNL		-			
724007	03719	Suffolk Executive					
724007	99999	Suffolk Executive2	10.000				
724010	13740	Richmond, VA	Comment	State and and and and and and			
724020	93739	WALLOPS ISL STN	38*56'N / 77*28'W, 8	18.4m (290') above :	s/I		
724030	93738	Sterling, VA - IAD					
724036	03710	Manassas Regional /					
724036	99999	2.Mannassas Region					
724070	93730	ATLANTIC CITY INTL					
724100	13733	Lynchhurg VA	1				

Precipitation data

Download and import from web or manually import data:

Precipitation Data for GSOD	Stations (NOAA)	3 🛛
Stations GSOD (NOAA)	Precipitation Annual Log	Available Data Web Retrieval Copy Station Data Import from Excel Import GHCN Help
Code Location Great Dismal NWR -Bedford montvale project 00440385 Back Bay National 00446906 Powhatan, VA 00448192 Suffolk Lake Kilby 00449213 Winterpock 4W, VA 13740 Richmond, VA 720498 CHESTERFIELD AI 722692 Warrenton, VA 723075 Oceana VA	Ye Date Moc Sum Sum (▼ Con 1973 1973 2013-08-26 42.97 109.14 650 1974 2013-08-26 42.84 108.81 650 1975 2013-08-26 51.85 131.70 650 1976 2013-08-26 51.85 131.70 650 1976 2013-08-26 36.21 91.97 650 1977 2013-08-26 43.28 109.93 650 1979 2013-08-26 51.87 131.75 650 1979 2013-08-26 51.97 131.75 650 1979 2013-08-26 51.97 131.75 650 1980 2013-08-26 39.97 101.52 650	Year(s) to Download and Import 723075 1. Download Data Range of Years Single Year From Year To Year [1973] 2013 Available Dates C User Default From Date To Date [1973-01-01] 2013-06-04 File Directory Terminate Import
723075 OCEANA NAS 723080 Norfolk VA 723085 NORFOLK NS 723260 Knoxville Municipal 724006 CHESAPEAKE RGH	1981 2013-08-26 36.10 91.69 GS0 1982 2013-08-26 45.26 114.96 GS0 1983 2013-08-26 47.35 120.27 GS0 1984 2013-08-26 46.77 118.80 GSC 1985 2013-08-26 46.77 118.80 GSC 1985 2013-08-26 41.80 106.17 GSC	C:\Users\kdobbs\Documents\MyWetBud\Dote\\precip\ File Name C:\Users\kdobbs\Documents\MyWetBud\Dots\\precip\
724007 Suffolk Executive 724007 Suffolk Executive2 724010 Richmond, VA 724020 WALLOPS ISL STN 724030 Sterling, VA - IAD 724036 Manassas Regione 724036 Xanpesse Regione	1986 2013-08-26 23.79 60.43 GSC 1987 2013-08-26 38.48 97.74 GSC 1988 2013-08-26 34.44 87.48 GSC 1989 2013-08-26 34.44 87.48 GSC 1989 2013-08-26 40.74 103.48 GSC 1990 2013-08-26 47.74 121.26 GSC 1992 2013-08-26 45.77 116.26 GSC	Progress Log
	Delete Year	

If your station does not have complete data set:

- Create record for next nearest station
- Download data for that station
- Copy data to your station record

Weather data

Used in ET calculations

tations G	SOD (NOAA)	Weath	her Data Log	Available Data Web Retrieval Copy Station Data Import from	n Excel Help
Code	Location Great Dismal NWR montvale project Back Bay National Powhatan, VA Suffolk Lake Kilby Winterpock 4W, VA Richmond, VA CHESTERFIELD AI	Image: Weil Image: Weil	+ - + ✓ × P Date Modi ▼ Com 2013-01-08 2012-12-28 2012-12-28 2012-12-28 2012-12-28 2012-12-28 2012-12-28 2012-12-28	Year(s) to Download and Import 00446906 Range of Years Single Year From Year To Year 1980 2012 Available Dates From Date To Date 1980-01-01 2012-12-28	1. Download Data Image: Delete Temp Files Terminate Download 2. Import Data Terminate Import
722692 723075 723075 723080 723085 723260 724006	Warrenton, VA Oceana, VA OCEANA NAS Norfolk, VA NORFOLK NS Knoxville Municipal CHESADEAKE BOD	1985 1986 1987 1988 1989 1990 1991	2012-12-28 2012-12-28 2012-12-28 2012-12-28 2012-12-28 2012-12-28 2012-12-28	File Directory File Name	
724000 724007 724007 724010 724020 724030 724036 724036	Suffolk Executive Suffolk Executive2 Richmond, VA WALLOPS ISL STN Sterling, VA - IAD Manassas Regiona 2. Mannassas Regic	1992 1993 1994 1995 1996 1997 1998	2012-12-28 2012-12-28 2012-12-28 2012-12-28 2012-12-28 2012-12-28 2012-12-28 2012-12-28	Progress Log	*
724070 724100	ATLANTIC CITY IN Lynchburg, VA	1999	2012-12-28		-

If your station does not have complete data set:

- Create record for next nearest station
- Download data for that station
- Copy data to your station record

Solar data

Used in ET calculations

Stations G	SOD (NOAA)	Solar Data Log	Available Data Web Retrieval Copy Station Data Import from Excel Help
		HH HH + - + × × C4	
Code 🔻	Location	Ye ▼ Date Mc ▼ Comme ▲	Year(s) to Download and Import 723075 1. Download Data
_	Great Dismal NWR	1970 2013-08-26 copy fro	Parige of reals Single Year
-Bedford	montvale project	1971 2013-08-26 copy fro	From Year To Year Select
00440385	Back Bay National	1972 2013-08-26 copy fro	1973 2013 @ Available Terminate Download
00446906	Powhatan, VA	1973 2013-08-26 copy fro	C User Default
00448192	Suffolk Lake Kilby	1974 2013-08-26 copy fro	Available Dates
00449213	Winterpock 4W, VA	1975 2013-08-26 copy fro	2. Import Data
13740	Richmond, VA	1976 2013-08-26 copy fro	From Date To Date
720498	CHESTERFIELD AI	1977 2013-08-26 copy fro	
722692	Warrenton, VA	1978 2013-08-26 copy fro	
723075	Oceana, VA	1979 2013-08-26 copy fro	Import from
723075	OCEANA NAS	1980 2013-08-26 copy fro	National Oceanic and Atmospheric Administration (NOAA) (1961-2005) OLD
723080	Norfolk, VA	1981 2013-08-26 copy fro	C National Oceanic and Atmochanic Administration (NOAA) (1961-2010) OLD
723085	NORFOLKINS	1982 2013-08-26 copy fro	1 National Oceanic and Annospheric Administration (NOAA) (1301-2010) OLD
723260	Knoxville Municipal	1983 2013-08-26 copy fro	C National Oceanic and Atmospheric Administration (NOAA) (1991-2010) NEW
724006	CHESAPEAKE RGP	1984 2013-08-26 copy fro	File Directory
724007	Suffolk Executive	1985 2013-08-26 copy fro	Children (Mahaba) Decumenta (MAWetRud) Deta (Vealar)
724007	Suffolk Executive2	1986 2013-08-26 copy fro	 Cosets (koopper Considents (which emper Consider Paris) (
724010	Richmond, VA	1987 2013-08-26 copy fro	
724020	WALLOPS ISL STN	1988 2013-08-26 copy fro	File Name
724030	Sterling, VA - IAD	1989 2013-08-26 copy fro	C\Users\kdobbs\Documents\MyWetBud\Data\\solar\
724036	Manassas Regiona	1990 2013-08-26 copy fro	
724036	2.Mannassas Regic	1991 2013-08-26 auto dov	Progress Log Warnings
724070	ATLANTIC CITY IN	1992 2013-08-26 auto dov	s spreader
724100	Lynchburg, VA.	1993 2013-08-26 auto dov	
724110	Roanoke, VA	1994 2013-08-26 auto dov	
724110	ROANOKE MUNICII	1995 2013-08-26 auto dov	
999999	NORFOLK REGION	1996 2013-08-26 auto dov	
	OCEANA NAS	1997 2013-08-26 auto do	
999999			

If your station does not have solar data:

- Create record for nearest station that does have solar data
- Download solar data for that station
- Copy solar data to your station record

Building a weather station data set

IMPORTANT: QAQC of climatological data is WetBud user's responsibility. Make sure to review the data before including in water budget analysis.

ations G	SOD (NOAA)	Precip	itation Annual	Log		Available D	ata Web	Retrieval Co	py Station Data	Import from	Excel In	nport GHCN	Help
	I	191 391	+ - + /	× G		Precipitatio	n Monthly		Precipitation D	aily			
ode 💌	Creat Dismal NWP	Drag	a column hea		lo group by th 📥	Draga.co	lumn head	ler here to gro	Drag a colur		ière là gro	up by 📥	
edford	montvale project	Ye 🕶	Date Moc 💌	Sum 💌	Sum (💌 Con	Mon Va	lue (i 💌 🗸	alue (r 💌	Date V	alue 🔻 Va	alue 💌 St	ati. 💌	
440385	Back Bay National	1973	2014-01-26	56.18	142.70 GSC	1	5 71	1450	1973-01-02	0.00	0.00	0	
446906	Powhatan VA	1974	2014-01-26	20.07	50.98 GSC	2	13.41	34.06	1973-01-03	0.00	0.00	n	
448192	Suffolk Lake Kilby	1975	2014-01-26	25.31	64.29 GSC	3	11 43	29.03	1973-01-04	0.00	1.09	0	
449213	Winterpock 4W VA	1976	2014-01-26	23.25	59.06 GSC	4	3.49	8.86	1973-01-05	0.10	0.00	0	
740	Bichmond VA	1977	2014-01-26	32.20	81.79 GSC	5	2 44	6.20	1973-01-06	0.00	0.00	0	
0498	CHESTEBEIELDAL	1978	2014-01-26	34.22	86.92 GSC	6	457	11.61	1973-01-08	0.00	0.00	0	
2692	Warrenton VA	1979	2014-01-26	33.04	83.92 GSC	7	1.15	2.92	1973-01-09	0.04	0.10	0	
3075	Oceana VA	1992	2014-01-26	0.24	0.61 GSC	8	7.97	20.24	1973-01-10	0.20	0.00	0	
3075	OCEANA NAS	1993	2014-01-26	0.00	0.00 GSC	9	0.20	0.51	1973-01-11	0.00	0.00	0	
3080	Norfolk VA	1994	2014-01-26	0.00	0.00 GSC	10	0.20	2.49	1973-01-12	0.00	0.00	0	
3085	NOBFOLKINS	1995	2014-01-26	0.00	0.00 GSC	11	1.48	3.76	1973-01-15	0.00	0.00	0	
3260	Knoxville Municipal	1996	2014-01-26	20.34	51.66 GSU	12	3.35	8.51	1973-01-16	0.00	0.00	0	
4006	CHESAPEAKE BGI	1997	2014-01-26	30.09	76.43 GSC	12	5,55	0.51	1973-01-17	0.00	0.00	0	
4007	Suffolk Executive	1009	2014-01-26	20.20	99.97 050				1973-01-18	3.58	9.09	0	
4007	Suffolk Executive2	1999	2014-01-26	1.10	2.79 GSC				1973-01-19	0.00	0.00	0	
4010	Richmond, VA	2000	2014-01-26	0.00	0.00 GSC				1973-01-22	0.08	0.20	0	
4020	WALLOPS ISL STN	2001	2014-01-26	6.91	17.55 GSC	Los las		1.2.121.22	1973-01-23	0.00	0.10	0	
4030	Sterling, VA - IAD	2002	2014-01-26	35.63	90.50 GSC	100 000		NXP	1973-01-24	0.00	0.00	0	
4036	Manassas Regiona	2003	2014-01-26	48.63	123.52 GS(-			1973-01-25	0.00	0.00	0	
1036	2.Mannassas Regic -	2004	2014-01-26	51.47	130.73 GSC -	× Ex	port All Ste	tion Data	1973-01-26	0.00	0.00	n 🗸	
11.0.0	Lunahbura \/A				•			-	23				
				. 1		🔣 Expo	ort Annual S	Station Data	IN	m + -	- /	XG	

Additional data for ET calculations

In addition to weather and solar data:

- Clear sky insolation index (Penman ET)
- Daylight length (Thornthwaite ET)

Building a weather station data set

Parameters for ET

Clear sky insolation index (Penman ET)

₽ Ne	ew Record	K H -		×				_	🖳 Clo
Searc	h [General Mo	inthly Averages	1					
IN_CODI -	IN_DESCR	INM_Y			× 10 8	I			
-Suffolk	For Suffolk USGS well W	1971				-			
Chesterfielc	data for PSF	1972			ar				
Powhatan	data for PWMA	1973		1100 100					
Suffolk	Skeetertown road site	1974	Voer						
WSSI_CR#	Data for CR3 Penman Ve	1975	1071	_	Activo				205
oceana	oceana data from xxx site	1976	113/1	1.	Active				
roanoke	data for roanoke	1977	January		February		March		
test	test	1978		0.7		0.7		0.7	
		1979				•	1		
		1980	April		May		June		
		1981		0.7		0.7		0.7	
		1982							
		1983	July		August	-	September	-	
		1984		0.7		0.7		0.7	
		1985							
		1986	October		November		December		
		1987		0.7		0.7	1	0.7	
		1988							
		1989							
		1990	-						

Building a weather station data set

Parameters for ET

Daylight length (Thornthwaite ET)

			í í	From Latitude (deg) 35	
Y_LATI • AY	MON Y AY_	VALUE 💌	Add Single Record		
36.00	1	10.01		To Latitude (deg) 40	
36.00	2	10.85	d. Concrete Descert Descere	Step (deg) 0.5	
36.00	3	11.94	Generate Record Range	otep (deg) [0.5	
36.00	4	13.08			
36.00	5	14.05		Cancel	Generate Record
36.00	6	14.56			
36.00	/	14.35		5	
36.00	8	13.53			
36.00	9	12.44	1		
36.00	10	11.31	X Delete All		
36.00	11	10.30			
36.00	12	9.76	1		
36.10	1	10.00	K Export		
36.10	2	10.85			
36.10	3	11.94			
36.10	4	13.09	🔩 Close		
36.10	5	14.06			
36.10	6	14.57			
36.10	7	14.35			
36.10	8	13.53			
2010	9	12 44			

Additional inputs and outputs

- Water budget inputs:
 - Groundwater in (quantified by user/manual import or calculated by Wem)
 - Surface runoff (calculated by WetBud)
 - Channelized flow (manual import)
 - Stream overbank (quantified by user/manual import or calculated by WetBud)
- Water budget outputs:
 - Groundwater out (quantified by user/manual import)
 - Surface flow (leaves site by overtopping 'weir' height assigned by user)
 - Channelized flow (quantified by user/manual import)

Basic Scenario Setup - General

- Create new Basic Scenario and assign WND years for analysis

		=	
Code Description WND PWMAWND	Code WND 41 Description PWMA WND Reference Weather Station 00446906 Active Standard Analysis Years Dry Year Specification User Specified Automatically Calculated Normal Year Specification User Specified Automatically Calculated Wet Year User Specified User Specified Automatically Calculated Wet Year User Specified Automatically Calculated Partial Year Wet Year Partial Year	Custom Analysis	Project Information Project Latitude 37.546 Project Longitude 777.997 Ref Elevation (m) 0 Range Range Range (yyyy-mm) To yyyy-mm
	User Specified 1993 Automatically Calculated Partial Year Comment		

Basic Scenario Setup - Wetland and Watershed

Search	-	General Wetland Watershed Inputs and Outputs Management and Options	
Jearan			
Code WND	Description PWMA WND		
	I that the	Constructed Wetland Area (acres) 2.000	8093.72 m^2
		Total Area of Watershed for Direct Surface Runoff (acres) 14,000	56656.04 m ²
		Watershed NRCS Curve Number 58.00	ř.
		Data for Groundwater calculations utilizing WEM	
		Width of Constructed Wetland at Adjacent Hillslope Bottom (m) 100.00	Ē.
		Thickness of Constructed Wetland at Adjacent Hillslope Bottom (m) 4.00	Ĩ.
		Hydraulic Conductivity of Hillslope (m/s) 0.0000050	Ē.

Basic Scenario Setup - Wetland and Watershed

Basic Scenario Setup – Inputs and Outputs

+ Nev	Basic Scenarios				8
V INEV	♦ New Basic Scenario	(* H = A * %		Export	🖳 Ex
Sear ND C	Search rode Description ND PWMAWND	General Wetland Watershed Inp Water Inputs Water Outputs Water Outputs Water Outputs PET Options Penman-Monteith Ma Penman-Monteith Ma Penman-Monteith Ma Penman-Monteith Ma Data for the Penman Mo Insolation Data data for PWMA Albedo 0.23	uts and Outputs Management and (ater Level Adjustment ethod (calculated by WetBud) on (calculated by Wetbud) ethod (imported/manually adjusted) on (imported/manually adjusted) onteith Method	Deptions	
		Groundwater OUT Options No Groundwater OUT Constant Rate User Time Series User Water OUT Select Series	Rate (in/mo) 1.23000 Select Series	Groundwater OUT (Data

Basic Scenario Setup – Inputs and Outputs

Basic Scenario Setup – Inputs and Outputs

Vew	Basic Scenario		Export
Searc	sh 🔤	General Wetland Watershed Inputs and Outp	uts Management and Options
Code	Description	Water Inputs Water Outputs Water Level Ac	djustment
WND	PWMA WND	Water Level Adjustment	
		Soil Storage Factor (0-1)	Surface Storage Factor (0-1)
		0.15	0.98
P		-Outlet Weir	and the second
		Constant Depth	Depth (in) 3.000
		O User Time Series	Select Series
			Weir Data.
		L	

Basic Scenario Analysis and Output

Wet, Normal, and Dry Years

Advanced Scenarios

Advanced Scenario Preparation

- 1. Develop full scale conceptual model
 - a. Topography
 - b. Hydrologic boundary conditions
 - c. Stratigraphy/Lithology
- 2. Create layer elevation files for model grid
- 3. Create time step array
- 4. Create **cell zones** for hydrologic boundary conditions (e.g. head boundaries, no flow areas drains, etc.)
- Create grid zones for cell properties (e.g. K_{sat}, ET, etc.)
- 6. Create chart formatting dataset for Advance Model output

1. Conceptual Model

Cedar Run Wetland Mitigation Bank

Hydrologic boundaries

- Mainly surface water driven system with compacted clay berm and subsoil
- Inlet and outlet weirs

Stratigraphy and Lithology

- 3 layers
 - Surface veg
 - Topsoil
 - Compacted clay

Areal Extent and Topography

- What size model grid?
- Flat layers?
- Topography?

1. Conceptual Model

Model Cor Model Descriptio	Cell Zones (Boundary Conditions) Grid Zones (Properties)
-CR3_2009 NW_SW_Elev	Grid Options
CR3_2009 Elevations	General Head C Drains C Monitoring Points C No Flow Cells C Wells C Drain Returns
CR3_2010 NW_SW_Elev	
Current Layer	
1	
Current Zone / Property Set	
Z C Descriptio Conductar	
<no data="" display="" to=""></no>	
1056 N 0	

Hydrologic boundaries

- Mainly surface water driven system with compacted clay berm and subsoil
- Inlet and outlet weirs

Stratigraphy and Lithology

- 3 layers
 - Surface veg
 - Topsoil
 - Compacted clay

Areal Extent and Topography

- What size model grid?
- Model units?
- Flat layers?
- Topography?

2. Create Layer Elevation Files

- Excel spreadsheet same size as model grid
 - Each cell must contain a value for elevation

Layer Elevation Setup			X
Grid Elevations Felevation Data For Top Elevations C Ert Surface Elevations C Ext Depth Surface Elev			
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 1 559 <	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0 1 39 55.9 39 55.9 39 55.9 39 55.9 39 55.9 39 55.9 39 55.9 39 55.9 39 55.9 30 55.9 313 56.13 13 56.13 13 56.13 13 56.14 109 56.09 109 56.09 11 56.11 12 56.11 12 56.11 13 56.11 11 56.11 12 56.11 13 56.11 14 56.11 15 56.11 16 56.16 17 56.1 18 56.1 19 56.09 109 56.09 109 56.09 109 56.09
2428 N	Initialize Stope	× Cancel	

from Dahl, 2000 (US Fish and Wildlife)

3. Create Time Step Array

- Time step array is used to set up simulation period
- Simulation period consists of one (steady-state) and/or multiple (transient) time steps
 - Contains hydrologic input (e.g. precipitation) and output (e.g. ET) data for each time step
 - Time step data are applied to the model through cell zones (boundary conditions) and grid zones (properties)

Creating a Time Step Array

- 1-year simulation period with daily time steps
- All rates/values entered in model units (e.g. m/s)

New Time Step	Array	<u>re</u>	H -	•	~	🐔 Co	py Time Step Arra	v					
escription R-3_2009_Thom R-3_2010_Thom	Num	CR-3_2	tion 009_Thorr of Time S	itens	7	×)elete Time Steps	V Impor	t Precip/ET/Ru	noff Rate	That	rt Time Step D	ata
CR3w_Thorn 73			365			+ Cre	eate All Time Step	s			🔀 Expo	ort Time Step A	Arre
		Time Ste (day)	ep Unit			۷	New Time Step				🔀 Impo	ort Time Step A	Arra
		Time Ste	eps in Arra	y		🔽 Dup	licate Last Entry	<u> - -</u>	F F F F	~ ×			
		Tim 🔻	Time ! 🔻	Numbe 💌	Time St 💌	Transi 🔻	Precip Rate 1 🔻	Precip Rate 🖅	ET Rate 💌	ET Surf. I 🔻	ET Surf. I 🔻	ET Extin(🔻 F	Ru
		1	86400	3	1.2	~	0.0000E+00	0.0000E+00	0.0000E+00				
		2	86400	3	1.2	~	0.0000E+00	0.0000E+00	0.0000E+00				_
		3	86400	3	1.2	•	0.0000E+00	0.0000E+00	0.0000E+00				_
		4	86400	3	1.2	v	0.0000E+00	0.0000E+00	0.0000E+00				-
		5	86400	3	1.2		1.7620E-00	1.70205.00	0.0000E+00				-
		5	00400	3	1.2	v	1.7039E-08	3 2338E-07	0.0000E+00				÷
		2	86400	3	1.2		1 9991E-07	1 9991E-07	0.0000E+00			-	-
		9	86400	3	12		0.0000E+00	0.0000E+00	0.0000E+00				-
		~	00.00	-	1.14		0.000002.00	0.00002.00	0.00002.00				-

Importing Precip, ET, and Runoff into Time Step Array

	Great Dismal NWR	Select Range Dates From Date	Precipitation Rate Calculations	Preview	
10440385	Back Bay National	1/1/2007 👻	Precin Bate 1	Col + Rate 1 + ET Rate +	
10446906	Powhatan VA	To Dete		1 6.4088E-07 1.2523E-08	1.11
10448192	Suffolk Lake Kilby	12/31/2007	O Precip Rate 2	2 0.0000E+00 2.5177E-08	
10449213	Winternock 4W/ VA	12/31/2007 +	ET Calculations	3 0.0000E+00 1.4149E-08	
13740	Richmond VA	-Convert Head to	O Do not Calculate FT Bate	4 0.0000E+00 1.7704E-08	
720498	CHESTERFIELDA		ET Data based as Desman	5 2.0579E-08 1.0531E-08	
722692	Warrenton VA	O millimeters (mm)	 E1 Rate based on Penman 	6 2.9104E-07 2.6837E-08	
723075	Oceana VA	 centimeters (cm) 	 ET Rate based on Thornthwaite 	7 0.0000E+00 2.5460E-08	
723075	OCEANA NAS	meters (m)	Surface Runoff Calculations	8 2.7634E-07 1.9800E-08	
723080	Norfolk VA	inches (in)		9 0.0000E+00 3.4590E-08	
723085	NOBEOLKINS		Calculate Runoff Values	10 0.0000E+00 2.7592E-08	
723260	Knowille Municipal	Calculate Rate Based on	Curve Number Runoff Area (ac)	11 0.0000E+00 1.2732E-08	
224006	CHESAPEAKE BG	seconds (s)	40 0	12 2.9398E-08 1.8971E-08	
724007	Suffolk Executive	Surface and a factory		13 0.0000E+00 2.3655E-08	
724007	Suffolk Executive2	o minutes (min)	Period for Each Time Step	14 0.0000E+00 2.6857E-08	
724010	Bichmond VA	O hours (h)	Day Month	15 0.0000E+00 3.2248E-08	
724020	WALLOPS ISL STN	🔿 days (d)		16 0.0000E+00 3.5644E-08	
724030	Sterling VA - IAD	months (mo)		17 0.0000E+00 2.4648E-08	
724036	Manassas Begion			18 0.0000E+00 8.5800E-09	
724036	2 Mannassas Begi		1	19 0.0000E+00 1.6643E-08	-
724100	Lynchburg VA	Calculate and Previ	iew Time Step Array Data 🎭	20 0 0000F+00 3 5788F-08	-
724110	Roanoke, VA	-Import Options		Export	365
724110	ROANOKE MUNIC	Import Precipitation Bate	≠ Import		
3999999	NORFOLK REGION		+ 3 mpon		
000000		Import ET Rate		1 1	

<u>Note:</u> Precipitation data must exist in station record and ET rates must be calculated in Basic Scenario prior to import into time stepfarray. 2000 (US Fish and Widlife)

Importing Precip, ET, and Runoff into Time Step Array

23

8 83 Import Precipitation, ET and Runoff Rate Data to Time Step Array Stations GSOD (NOAA) Import Range Available Precipitation Data Available ET Data Code
Location -Precipitation Annual Log Precipitation Monthly Precipitation Daily Great Dismal NWR . -Bedford montvale project 00440385 Back Bay National Ye 🔻 Date Moc 🔻 Sum 🔹 Sum (👻 Sou Mo Value (ir Value (c V Date Value (in Value (ci -00446906 Powhatan, VA 1979 2013-03-06 24.55 62.36 mar 4.72 11.99 2007-01-01 2.18 5.54 00448192 Suffolk Lake Kilby 1980 2013-03-06 27.17 69.01 man 1.68 2 4.27 2007-01-02 0.00 0.00 00449213 Winterpock 4W, VA 1981 201 Import Precipitation, ET and Runoff Rate Data to Time Step Array 8 13740 Richmond, VA 1982 201 CHESTERFIELD A 720498 1983 2011 Stations GSOD (NOAA) Import Range Available Precipitation Data Available ET Data 722692 Warrenton, VA 1987 2013 Code - Location -Penman Thornthwaite 723075 Oceana, VA 1988 2013 Great Dismal NWR OCEANA NAS 723075 1991 2013 Penman Daily -Bedford montvale project Penman Annual Log Penman Monthly 723080 Norfolk VA 1992 2013 00440385 Back Bay National Bråg s colümn hender here to group b 📤 723085 NORFOLK NS 1993 2013 00446906 Powhatan, VA Knoxville Municipal 723260 2000 2013 Ye T Date Mod T Sum (in) T Sum (cm T S Mo - Value (c - Value (ir -▼ Value (cn ▼ Value (in) ▼ Date 00448192 Suffolk Lake Kilby 724006 CHESAPEAKE RG 2001 201 1979 2014-01-26 38.48 97.74 C 1 3.44 1.35 1979-01-01 0.08 0.03 00449213 Winterpock 4W, VA 724007 Suffolk Executive 2002 2013 1980 2014-01-26 48.37 122.87 C 2 2.87 1.13 1979-01-02 0.06 0.02 13740 Richmond, VA 724007 Suffolk Executive2 2003 2013 1981 2014-01-26 48.19 122.41 0 3 8.18 3.22 1979-01-03 0.17 0.07 720498 CHESTERFIELD A 724010 Richmond, VA 2005 2013 1982 2014-01-26 41.30 104.89 C 4 9.88 3.89 1979-01-04 0.07 0.03 722692 Warrenton, VA 724020 WALLOPS ISL STN 2006 2013 45.32 1983 2014-01-26 115.12 C 5 11.13 4.38 1979-01-05 0.07 0.03 723075 Oceana, VA 724030 Sterling, VA - IAD 2007 201 1991 2014-01-26 46.53 118.18 C 6 13.10 5.16 1979-01-06 0.05 0.02 723075 OCEANA NAS 724036 Manassas Regiona 2010 2013 1992 2014-01-26 104.94 C 41.31 7 12.17 4.79 1979-01-07 0.04 0.01 724036 2.Mannassas Regi 723080 Norfolk VA 2011 2013 1993 2014-01-26 46.21 117.37 C 8 13.31 5.24 1979-01-08 0.07 724100 Lynchburg, VA 723085 NORFOLK NS 0.03 4 2000 2014-01-26 42.91 108.98 (3.36 1979-01-09 9 8.53 0.10 0.04 724110 Roanoke, VA 723260 Knoxville Municipal 2001 2014-01-26 44.18 112.22 0 10 6.74 2.65 1979-01-10 0.07 0.03 ROANOKE MUNIC 724110 724006 CHESAPEAKE RG 46.67 118.54 C 11 9999999 NORFOLK REGION 2002 2014-01-26 4.63 1.82 1979-01-11 0.07 0.03 724007 Suffolk Executive -000000 OCEANA MAS 2003 2014-01-26 37.65 95.64 C 3.74 12 1.47 1979-01-12 0.06 0.02 724007 Suffolk Executive2 2005 2014-01-26 44.22 112.31 (1979-01-13 0.02 0.01 724010 Richmond, VA 2006 2014-01-26 48.67 123.62 0 WALLOPS ISL STN 1979-01-14 0.06 0.03 724020 2007 2014-01-26 48.92 124.25 0 1979-01-15 0.17 0.07 724030 Sterling, VA-IAD Close 2010 2014-01-26 49.50 125.74 C 1979-01-16 0.15 0.06 724036 Manassas Regiona 2011 2014-01-26 45.16 114.71 0 1979-01-17 0.14 0.06 724036 2.Mannassas Regi 2012 2014-01-26 112.13 0 44.15 1979-01-18 0.20 0.08 724100 Lynchburg, VA 1979-01-19 0.10 0.04 724110 Roanoke, VA . **| |** | 1979-01-20 0.03 0.01 724110 ROANOKE MUNIC 1979-01-21 0.09 0.04 -999999 NORFOLK REGION aaaaaa OCEANA MAS **1** Close

Importing Precip, ET, and Runoff into Time Step Array

5. Create Grid Zones (Properties)

<u>Types of Grid Zones:</u> Hydraulic Conductivity, Specific Storage, Precip Rate, and ET Rate

For Cedar Run example:

Create Hydraulic Conductivity and Specific Storage Zones for surface veg., topsoil, and compacted clay.

Advanced Parameter Setup 2 - Grid Zones	7 33	Z Advanced Parameter Setup 2 - Grid Zones	8 23
Hydraulic Conductity Specific Storage Precip Rate ET Rate 1 Veg/Surface Water 1 2 CR3 Topsoil Description 1 14 TestCR3 Veg/Surface Water 1 21 KY 21 1 KZ 21 21 1	Color Options Text Color Background Color Set Color Cell Color Color Cell Color Cell Color Cel	Hydraulic Conductity: Specific Storage Precip Rate ET Rate Zon®Description New Spec Storage Zone 1 Water/Veg Layer 0 2 CR 3 Top Soil Water/Veg Layer 8 Impermeable 0.38 Specific Storage 0.38 Specific Storage 0.38 Specific Storage 0.38	Color Options Text Color Background Color Set Color Cell Color Celor
			1 Close
		S Fish and Wildlife)	

5. Create Grid Zones (Properties)

<u>Types of Grid Zones:</u> Hydraulic Conductivity, Specific Storage, Precip Rate, and ET Rate

For all models:

 Create Precip Rate and ET Zone and assign time step array or constant rate

Advanced Parameter !	Setup 2 - Grid Zones	Advanced Parameter Setup 2 - Grid Zones	8
Hydraulic Conductity Spu Zor Description 3 2009_CR+3 4 CR3_0	ecitic Storage Precip Rate ET Rate	Hydraulic Conductity Specific Storage Precip Rate ET Rate Image: CR3 2010 Thom Image: CR3 2010 Thom Image: CR3 2010 Thom Image: CR3 2010 Thom Image: CR3 2010 Thom Image: CR3 2010 Thom Image: CR3 2010 Thom Image: CR3 2010 Thom Image: CR3 2010 Thom Image: CR3 2010 Thom Image: CR3 2010 Thom Image: CR3 2010 Thom Image: CR3 2010 Thom Image: CR3 2010 Thom Image: CR3 2010 Thom Image: CR3 2010 Thom Image: CR3 2010 Thom Image: CR3 2010 Thom Image: CR3 2010 Thom Image: CR3 2010 Thom Image: CR3 2010 Thom Image: CR3 2010 Thom Image: CR3 2010 Thom Image: CR3 2010 Thom Image: CR3 2010 Thom Image: CR3 2010 Thom Image: CR3 2010 Thom Image: CR3 2010 Thom Image: CR3 2010 Thom Image: CR3 2010 Thom Image: CR3 2010 Thom Image: CR3 2010 Thom Image: CR3 2010 Thom Image: CR3 2010 Thom Image: CR3 2010 Thom Image: CR3 2010 Thom Image: CR3 2010 Thom Image: CR3 2010 Thom Image: CR3 2010 Thom Image: CR3 2010 Thom Image: CR3 2010 Thom Image: CR3 2010 Thom Image: CR3 2010 Thom Image: CR3 2010 Thom Image: CR3 2010 Thom Image: CR3 2010 Thom Image: CR3 20	Set Color Set Color
			🕵 Clos

6. Create Chart Formatting Dataset

New Chart New Chart Search General Axe ag a column header here to group by Code C	▲ <u>~</u> ×	Export	I Close			
Search General Axe	l= loun alu					
ag a column header here to group by	s Titles Grid / Legend Help	1				
-adv ex	5					
de Description Description	Chart Fo	ormatting				8
av ex for advanced model examp	d medel evenue					
F_charts Scales for PSF	ta model example	New Chart	P P	~ *	Export	1 Clos
rsim /MA	Sean	ch [Canada Aves		Hala 1	
			Bettern Avia	ies Gnu / Legenu	Help 1	
	Dreg a co	lumn header nere th group	Minimum X	Maximum×	Increment	
	Drag d co	inini neoder nere to group		-	T	Auto
	Code	Description	V Asial abal Famila			
	-adv ex	for advanced model ex	am; Axis Label Format	-	Γ.	IsDate
	-montvale	montvale mitigation site				
	PSF_Chard	s acales ior Par	Left Axis			
	PAMA		Left: Min Y	Left: Max Y	Left: Increment	
			28	29	0.5	Auto
			Axis Label Format			
			Top Axis			
			Top: Min X	Top: Max X	Top: Increment	
						Auto
			Axis Label Format		Г	Up / Down
					1	
			Right Axis	P. L. L. V	P.11	
1 V			Fight: Min Y	Fight Max Y	Right Increment	- Auto
			1	L		J* Auto
			Axis Label Format			Up / Down
			•			

Create new Advanced Scenario, specify units of time and length, size of the model grid, and select a Time Step Array.

Advanced Se	cenarios						8
🔱 New M	odel 🥂 🕨					K Export	
Search [General Setup Layers N	ame File Solve	1			
lodel Code emo1+ET emo1-ET emo2 emo3	Model Description Calibration model for Piedrr calibration model for Piedrr original design with sloping terraced two-cell (upper an	Code demo1+ET Description	5		Active Adjust Area	Time Units Undefined Seconds Minutes	
demo3 terraced, two-cell (upper an demo3.1 terraced, two-cell (upper an demo4 simple box with drain		calibration model for Piedmo	nt valley bottom	(Aug - Jul)		O Hours	-
		4	40	42	888	O Years	_
		Grid Origin X Grid Origi	n Y Grid C	Drigin Z 0	Head for Dry Cells 999	O Undefined	
		Column Width Row Widt	th 1 🗌 Fla	it Layers		 Meters Centimeter 	s
		Time Step Array				Utilities	
		demo1			•	🗐 Cop	y Model
		As specified in the Time As specified below	Step array			× Dele	te Model
		Number of Time Steps (Stress 366	s Periods)			✔ Clean	up Model
		-					

Create new Advanced Scenario, specify units of time and length, size of the model grid, and select a time Step Array.

Vew N	1odel H	• - < × ×		_	Export	Clos
Search		General Setup Layers Nam	e File Solve			
odel Code emo1+ET emo1-ET emo2 emo3	Model Description Calibration model for Piedrr calibration model for Piedrr original design with sloping terraced, two-cell (upper an torraced two-cell (upper an	Code demo1+ET Description calibration model for Piedmont v	5 Palley bottom (Aug - Jul)	Active Adjust Area	Time Units Undefined Seconds Minutes Hours	
emos.r emo4	simple box with drain	Number of Layers Rows	Columns 40 42	Head for No-Flow Cells 888	O Days O Years	
		Grid Origin X Grid Origin Y	Grid Origin Z	Head for Dry Cells 999	Length Units O Undefined O Feet	
		Column Width Row Width	1 🗌 Flat Layers		Centimeters	
		Time Step Array			Utilities	
		demo1 Number of Time Steps		•	🕲 Copy Model	
		 As specified in the Time Ste As specified below 	p array		X Delete Mode	el 🗌
		Number of Time Steps (Stress P	eriods)		Clean up Mod	el

Create new Advanced Scenario, specify units of time and length size of the model grid, and select a Time Step Array.

Vew Moo		- × ×			-	Export	
Search		General Setup Lay	/ers Name File	Solve			
odel Code emo1+ET emo2 emo3 emo3.1 emo4	Model Description calibration model for Piedrr calibration model for Piedrr original design with sloping terraced, two-cell (upper an terraced, two-cell (upper an simple box with drain	Code demo1+ET Description calibration model for Number of Layers A Grid Origin X Column Width Column Width Time Step Array	Piedmont valley tows 40 irid Origin Y 0 tow Width 1	5 bottom (Aug - Jul) Columns 42 Grid Origin Z 0 Flat Layers	 ✓ Active ✓ Adjust Area Head for No-Flow Cells 888 Head for Dry Cells 999 	Time Units Undefined Seconds Minutes Hours Days Years Length Units Undefined Feet Meters Centimeters Utilities	
		demo1 Number of Time Ste As specified in th As specified belo Number of Time Step 366	ps ne Time Step arra ow s (Stress Periods	y s)	•	Copy Mod X Delete Mo	del odel

Advanced Model Setup

Create new Advanced Scenario, specify units of time and length,

size of the model grid, and select a Time Step Array.

Advanced S	cenarios				8	23
🕹 New M	odel H	· ×		1	Export Store	se
Search [General Setup Layers Name File	Solve			
Model Code demo1+ET demo1-ET	Model Description Calibration model for Piedrr Calibration model for Piedrr	Code demo1+ET	5	Active AdjustArea	Time Units O Undefined Seconds	
demo2 demo3 demo31	original design with sloping terraced, two-cell (upper an terraced, two-cell (upper an	Description calibration model for Piedmont valley	Advanced Grid Setup Layer Zones Model Cont Model Descriptio	Cell Zones (Boundary Conditions) Grid Zones (Properties	5]	
demo4	simple box with drain	Number of Layers Rows 4 40 Grid Origin X Grid Origin Y 0 0	CR3_2009 Elevations CR3_2010 2010Thornthweite CR3_2010 NW_SW_Elev	General Head Corains Moni	oning Points © No Flow Cells © Wells © Die Indeddd Indeddadaa Indeddada Indeddada	in Returns
		Time Step Array demo1	Current Leyer			
		Number of Time Steps As specified in the Time Step arra As specified below	<no data="" display?<="" td="" to=""><td></td><td></td><td></td></no>			
6		Number of Time Steps (Stress Periods	1000 N		TestGHX Ca	ncel 🕄 Clo

Create new Advanced Scenario, specify units of time and length, size of the model grid, and select a Time Step Array.

🕹 New M	todel H	× ×			-	Export Store
Search [General Setup Layers	Name File	Solve		
Model Code Model Description demo1+ET calibration model for Piedrr demo2 original design with sloping demo3 terraced, two-cell (upper an demo4 simple box with drain	Code demo1+ET Description calibration model for Pie Number of Layers A Grid Origin X Grid Origin X Column Width Row 1	dmont valley bo s 40 0 Origin Y 0 Width 1	5 ottom (Aug - Jul) Columns 42 Grid Origin Z 0 Flat Layers	Active Adjust Area Head for No-Flow Cells 888 Head for Dry Cells 999	Time Units Undefined Seconds Minutes Hours Days Years Length Units Undefined Feet Meters Centimeters	
		Time Step Array demo1 Number of Time Steps- As specified in the T As specified below Number of Time Steps (S 366	ïme Step array Stress Periods)			Utilities Copy Model Copy Model Clean up Model

Save

🔑 New M	1odel H	× ×				Export	
Search [General Setup L	.ayers Name File	Solve			
Model Code Model Description demo1+ET calibration model for Piedm demo1-ET calibration model for Piedm demo2 original design with sloping demo3 terraced, two-cell (upper an demo4 simple box with drain	Code demo1+ET Description calibration model f Number of Layers 4 Grid Origin X 0	5 odel for Piedmont valley bottom (Aug - J vers Rows Columns 4 40 Grid Origin Y Grid Origin Z 0 0 0		Active Adjust Area Head for No-Flow Cells 888 Head for Dry Cells 999	Time Units Undefined Seconds Minutes Hours Days Years Length Units Undefined Feet		
		Column Width	Row Width	Flat Layers		 Meters Centimeters 	
		Time Step Array demo1 Number of Time S As specified ir As specified b Number of Time St 366	Steps n the Time Step arra elow eps (Stress Period:	ay s)	•	Utilities	Model

Advanced Model Setup - Setup tab

Select a precipitation option, ET option, chart settings file, and assign the path for storing MODFLOW Input and Output files.

🔱 New Adva	anced Scenario	P. H - A - X			Export	St. Clos
Search [General Setup L	ayers Name File Solve			
Scenario Cod CR3_2009 CR3_2009 CR3_2010 CR3_2010	Description NW_SW_Elev Elevations 2010Thornthwaite NW_SW_Elev	Flow Package LPF UPW Solver SIP Solver PCG Solver NWT Solver Precipitation Rate 1-Precipitation I 3-Precipitation I 3-Precipitation I	GMS default Options Rate is only Applied to Cells in the Tr Rate is Applied to the Highest Active	op Layer Cell in each Vertical Co	Jumn	
		2-The Cell for e 3-Evapotranspi Chart Settings for He -adv ex Path for storing Mod C:\Wetbud\MODFL	ach Vertical Column is Specified by ration is Applied to the Highest Activ eads flow Input and Output files .OW output	he User e Cell in each Vertical C	olumn	Browse

Advanced Model Setup - Layers tab

 Create all layers, import elevation data, and select layer parameters.

🔱 New Adva	nced Scenario	H - A - K		Export	
Search		General Setup Layers Name F	ile Solve		
cenario Cod 💌	Description		1-1-1-1		
CR3_2009	NW_SW_Elev	V New Layer	K		
R3_2009	Elevations			Description	
R3_2010	2010Thornthwaite	▼ Layer Descrip ▼ Top ▼ Bottc	▼ ET Surf ▼ ET Ext. ▼	Veg/Surface Water	Top Elevation
R3_2010	NW_SW_Elev	1 Veg/Surface Wa 58.000 55.7	0 58.000 0.300		
		2 Top Soil 56.170 55.40	30	Layer Number	Bottom Elevation
		3 Low Perm Subso 55.940 55.1	20	1 6/	
				Top Elevation Bot Elevation	
				58.000 55.710	ET Surf Elev
				Initial Head ET Surf Elev	
				55.800 58.000	ET Ext. Depth
				ET Ext. Depth	
				0.300 Color Contours	Flat Layers
		JavarWatting -Wothing Three	and - Mortical Conducts it	Horizontal Anisotropy	
		Length	venical conductivity	 Isotropic condition 	
		0.0010	• Value	 Specified Anisotropy 	/ per Cell
		Active	O Ratio	O Uniform Anisotropy V	/alue
		Laver Type	-Layer Condition (IBO	UND) Anizatrany 1 100au	00
		O Confined	(a) Veriable Hand	Anisotropy 1.008+	-00
			vanable riead	Interblock Transmissivity	y (under LPF)
		 Uncontined (Layer I) 	Constant Head	Harmonic Mean	
		 Unconfined (S Varies) 		🔘 Logarithmic Mean	
		O Unconfined (T Varies)	O No Flow	O AM Thickn I M Hydra	ulic Conductivity

Advanced Model Setup - Layers tab

Importing elevation data

Advanced Model Setup – Layers tab Initial head ET surface elevation ET extinction depth

New Adva	Inced Scenario	H - A - 8				Export	1 0
Search		General Setup Lay	/ers Name File	Solve			
ario Cod 💌 2009	Description NW SW Elev	Y New Layer	 -	-			
2009	Elevations	5	1-1-1-		Descriptio		
2010	2010Thornthwaite	▼ Layer Descrip ▼	Top - Botte -	ET Surf - ET Ext	T Descriptio		Top Elevatio
2010	NW_SW_Elev	1 Veg/Surface Wa	58.000 55.710	58.000 0.1	300 Iveg/Suna	ace water	
	1	2 Top Soil	56.170 55.480		Layer Num	iber	Bottom Eleveti
		3 Low Perm Subso	55.940 55.170		-	1 67	- Dollom Lieval
					Top Eleva	tion Bot Elevation	
					58.0	00 55,710	ET Surf Elev
					la Matthe	-	
					initial Heal		ET Ext Dent
					55.8	58.000	
					ET Ext. De	pth	
					0.3	00 V Color Contours	Flat Laye
			100 mt - 1 - 1			Horizontal Anisotropy	
		eLaver weinig-	wennig (hiesno)	-Vertical Con	ductivity	 Isotropic condition 	
		C) nergynier	Cengin 0.0010	Value		Specified Anisotropy	per Cell
		(a) Active	0.0010	C Ratio		C Uniform Anisotrony V	alue
						C ennement incomepy i	
		Layer Type		Layer Condi	tion (IBOUND)	Anisotropy 1.00e+	00
		Confined		 Variable 	Head	Interplack Transmissis it	(under I DD
		 Unconfined (Lay 	er 1)			Interblock Industrissivity	(under LFF)
		O Unconfined (SV)	aries)	Constant	Head	 Harmonic Mean 	
		Circonined (o vi	une of			C Logarithmic Mean	
	New Advz Search 2009 2009 2010 2010	New Advanced Scenario	New Advanced Scenario	New Advanced Scenario H - A Search General Setup Layers Name File 2003 NW_SW_Elev New Layer H 2003 Elevations - - 2010 2010Thornthwaite - - 2010 NW_SW_Elev - - 3 Low Perm Subso 55.940 55.170 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -	New Advanced Scenario +1 - Search General Setup Layers Name File Solve ario Cod • Description • 2009 NW_SW_Elev 2009 Elevations 2010 2010Thornthwaite 1 Veg/Surface We 58.000 2 Top Soil 3 Layer Verifing Threshold Vertical Con • Value Adve Layer Type Confined • Value • Unconfined (Layer 1) Constant	New Advanced Scenario Image: Constant of the second scenario Search General Setup Layers Name File Solve ario Cod • Description Image: Constant Setup Layers Name File Solve 2003 NW_SW_Elev 2001 2010Thornthwaite 1 Veg/Surface Wo 58,000 2010 NW_SW_Elev 2010 NW_SW_Elev 2010 NW_SW_Elev 2010 Status 2010	New Advanced Scenario H

Advanced Model Grid Setup – Cell Zones

Assign Cell Zones(Boundary Conditions) to cells in the model grid.

Advanced Model Grid Setup – Grid Zones

Assign Grid Zones(Properties) to every cell in each layer of the model grid.

		Advanced Grid Setup				
	Advanced Crid Cotors	Layer Zones				
Advanced Grid Setup	Layer Zones	Model Cor Model Descriptio	Cell Zones (Boundary Conditions) Grid Options	Grid Zones (Properties)	C. Procin Pata	CETPetr
Model Col V Model Description -CR3_2009 NW_SW_Elev CR3_2009 Elevations CR3_2010 2010Thomthwaite CR3_2010 NW_SW_Elev	-CR3_2009 NW_SW_Elev CR3_2009 Elevations CR3_2010 2010Thornthwaite CR3_2010 NW_SW_Elev	r CR3_2010 2010Thornthwaite CR3_2010 NW_SW_Elev				
	Current Lever	Current Layer	C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	· · · · · · · · · · · · · · · · · · ·		
Current Layer	2	Current Zone / Property Set	<pre>4</pre>			
Current Zone / Property Set	Current Zone / Property Set	Z(Descriptio Kx 1 Veg/Surface 2.1 CR3 Topsoil 0.0001				
Veg/Surface 2.1 2 CR3 Topsoil 0.0001 3 Perm Sub So 2.3E-7	2 CR3 Topsoil 0.0001	3 Perm Sub So 2.3E-7 14 TestCR3 0.002				
14 TestCR3 0.002						
	4 000000 - 000000 - 000000 - 000000 - 000000 - 000000 - 000000					
		1056 N 4	-1,-1			Test Cond X Cancel 1 Close
1056 N	1056 N 4	<u></u>				

Advanced Model Grid Setup – Grid Zones

 Assign Grid Zones(Properties) to every cell in each layer of the model grid.

Advanced Model Output

- Once grid setup is complete, return to Advanced Scenarios window.
- In the Name File tab, generate name files for the current scenario. Save and proceed to the Solve tab.

Search		General Setup	ayers Name File Solve		
enario Cod	Description			1.1.1	. 1
R3_2009	NW_SW_Elev	Generate 1	Name File for Current Model		8
3_2009	Elevations				
3_2010	2010Thornthwaite	Short Name V	umt 🕶 Filename	×	
3_2010	NW_SW_Elev	LIST	7 -CR3_2009.lst		
		BAS6	1 -CR3_2009.bas		
		DIS	29 -CR3_2009.dis		
		UPW	11 -CR3_2009.upw		
		ZONE	40 -CR3_2009.zone		
		DRN	13 -CR3_2009.dm		
		GHB	17 -CR3_2009.ghb		
		RCH	18 -CR3_2009.rch		
		NWT	19 -CR3_2009.NWT		
		OC	22 -CR3_2009.oc		
		WEL	12 -CR3_2009.wel		
		EVT	74 -CR3_2009.evt		
		DRT	75 -CR3_2009.drt		
		DATA(BINAR)	50 -CR3_2009.cbb		
		DATA(BINAR'	54 -CR3_2009.cbw		
		DATA(BINAR'	51 -CR3_2009.crc		
		DATA(BINAR)	30 -CR3_2009.hds		
		DATAPINAD	31 -CD3 2009 ddp		

Advanced Model Output

In the Solve tab, create MODFLOW input files, execute MODFLOW, and show Model results (see *Section 4.7. Advanced Model Output* for more information).

Scenario Cod vDescriptionSolving:Stress period:361Time step:1Groundwater-Flow Eqn.CR3_2009ElevationsCR3_20102010ThomthwaiteCR3_20102010ThomthwaiteCR3_2010NW_SW_ElevSolving:Stress period:362Time step:CR3_20102010ThomthwaiteCR3_2010NW_SW_ElevSolving:Stress period:362Time step:CR3_2010NW_SW_ElevSolving:Stress period:362Time step:363Groundwater-Flow Eqn.Solving:Stress period:364Time step:361Groundwater-Flow Eqn.Solving:Stress period:363Time step:361Groundwater-Flow Eqn.Solving:Stress period:363Time step:361Groundwater-Flow Eqn.Solving:Stress period:363Time step:361Groundwater-Flow Eqn.Solving:Stress period:364Time step:361Groundwater-Flow Eqn.Solving:Stress period:365Time step:361Groundwater-Flow Eqn.Solving:Stress period:365Time step:361Groundwater-Flow Eqn.Solving:Stress period:365Time step:361Groundwater-Flow Eqn.Solving:Stress period:365Time step:361 <t< th=""><th>Search [</th><th></th><th>C:\Window</th><th>s\system32</th><th>\cmd.exe</th><th></th><th></th><th></th><th></th><th></th><th>- •</th></t<>	Search [C:\Window	s\system32	\cmd.exe						- •
R3_2009NW_SW_ElevR3_2009ElevationsR3_20102010ThornthwaiteR3_20102010ThornthwaiteR3_2010NW_SW_ElevSolving:Stress period:362Time step:363Groundwater-Flow Eqn.Solving:Stress period:362Time step:363Groundwater-Flow Eqn.Solving:Stress period:364Time step:365Groundwater-Flow Eqn.Solving:Stress period:363Time step:364Time step:365Groundwater-Flow Eqn.Solving:Stress period:363Time step:364Time step:365Groundwater-Flow Eqn.Solving:Stress period:364Time step:365Groundwater-Flow Eqn.Solving:Stress period:365Stress period:366Groundwater-Flow Eqn.Solving:Stress period:365Time step:361Groundwater-Flow Eqn.Solving:Stress period:365Time step:361Groundwater-Flow Eqn.Solving:Stress period:365Time step:361Groundwater-Flow Eqn.Solving:Stress period:365Time step:361Groundwater-Flow Eqn.Solving:Stress period:366Time step:361Groundwater-Flow Eqn.Solving:Stress period: <th>cenario Cod</th> <th> Description </th> <th>Solving:</th> <th>Stress</th> <th>period:</th> <th>361</th> <th>Time</th> <th>step:</th> <th>1</th> <th>Groundwater-Flow</th> <th>Eqn.</th>	cenario Cod	 Description 	Solving:	Stress	period:	361	Time	step:	1	Groundwater-Flow	Eqn.
R3_2009ElevationsSolving:Stress period:361Time step:3Groundwater-Flow Eqn.R3_20102010ThornthwaiteR3_2010NW_SW_ElevSolving:Stress period:362Time step:1Groundwater-Flow Eqn.Solving:Stress period:362Time step:3Groundwater-Flow Eqn.Solving:Stress period:363Time step:1Groundwater-Flow Eqn.Solving:Stress period:363Time step:1Groundwater-Flow Eqn.Solving:Stress period:363Time step:2Groundwater-Flow Eqn.Solving:Stress period:363Time step:3Groundwater-Flow Eqn.Solving:Stress period:363Time step:1Groundwater-Flow Eqn.Solving:Stress period:364Time step:1Groundwater-Flow Eqn.Solving:Stress period:364Time step:2Groundwater-Flow Eqn.Solving:Stress period:365Time step:3Groundwater-Flow Eqn.Solving:Stress period:366Time step:3Groundwater-Flow Eqn	R3_2009	NW_SW_Elev	Solving:	Stress	period:	361	Time	step:	2	Groundwater-Flow	Eqn.
R3_20102010ThomthwaiteSolving: Stress period:362Time step:1Groundwater-Flow Eqn.R3_2010NW_SW_ElevSolving: Stress period:362Time step:2Groundwater-Flow Eqn.Solving: Stress period:363Time step:3Groundwater-Flow Eqn.Solving: Stress period:363Time step:2Groundwater-Flow Eqn.Solving: Stress period:363Time step:2Groundwater-Flow Eqn.Solving: Stress period:363Time step:3Groundwater-Flow Eqn.Solving: Stress period:364Time step:3Groundwater-Flow Eqn.Solving: Stress period:364Time step:3Groundwater-Flow Eqn.Solving: Stress period:364Time step:3Groundwater-Flow Eqn.Solving: Stress period:365Time step:3Groundwater-Flow Eqn.Solving: Stress period:365Time step:3Groundwater-Flow Eqn.Solving: Stress period:365Time step:3Groundwater-Flow Eqn.Solving: Stress period:365Time step:3Groundwater-Flow Eqn.Solving: Stress period:366Time step:1Groundwater-Flow Eqn.Solving: Stress period:366Time step:2Groundwater-Flow Eqn.Solving: Stress period:366Time step:3Groundwater-Flow Eqn.Solving: Stress period:366Time step:3Groundwater-Flow Eqn.Solving: Stress period:366Time st	R3_2009	Elevations	Solving:	Stress	period:	361	Time	step:	3	Groundwater-Flow	Eqn.
R3_2010NW_SW_ElevSolving: Stress period:362Time step:2Groundwater-Flow Eqn.Solving: Stress period:363Time step:3Groundwater-Flow Eqn.Solving: Stress period:363Time step:1Groundwater-Flow Eqn.Solving: Stress period:363Time step:2Groundwater-Flow Eqn.Solving: Stress period:363Time step:3Groundwater-Flow Eqn.Solving: Stress period:364Time step:3Groundwater-Flow Eqn.Solving: Stress period:364Time step:2Groundwater-Flow Eqn.Solving: Stress period:364Time step:3Groundwater-Flow Eqn.Solving: Stress period:365Time step:3Groundwater-Flow Eqn.Solving: Stress period:366Time step:3Groundwater-Flow E	R3_2010	2010Thornthwaite	Solving:	Stress	period:	362	Time	step:	1	Groundwater-Flow	Eqn.
Solving:Stress period:362Time step:3Groundwater-Flow Eqn.Solving:Stress period:363Time step:1Groundwater-Flow Eqn.Solving:Stress period:363Time step:2Groundwater-Flow Eqn.Solving:Stress period:364Time step:3Groundwater-Flow Eqn.Solving:Stress period:364Time step:1Groundwater-Flow Eqn.Solving:Stress period:364Time step:2Groundwater-Flow Eqn.Solving:Stress period:364Time step:3Groundwater-Flow Eqn.Solving:Stress period:365Time step:3Groundwater-Flow Eqn.Solving:Stress period:365Time step:1Groundwater-Flow Eqn.Solving:Stress period:365Time step:2Groundwater-Flow Eqn.Solving:Stress period:365Time step:2Groundwater-Flow Eqn.Solving:Stress period:365Time step:3Groundwater-Flow Eqn.Solving:Stress period:366Time step:3Groundwater-Flow Eqn.Solving:Stress period:366Time step:2Groundwater-Flow Eqn.Solving:Stress period:366Time step:3Groundwater-Flow Eqn.Solving:Stress period:366Time step:3Groundwater-Flow Eqn.Solving:Stress period:366Time step:3Groundwater-Flow Eqn. <td>R3_2010</td> <td>NW_SW_Elev</td> <td>Solving:</td> <td>Stress</td> <td>period:</td> <td>362</td> <td>Time</td> <td>step:</td> <td>2</td> <td>Groundwater-Flow</td> <td>Eqn.</td>	R3_2010	NW_SW_Elev	Solving:	Stress	period:	362	Time	step:	2	Groundwater-Flow	Eqn.
Solving:Stress period:363Time step:1Groundwater-Flow Eqn.Solving:Stress period:363Time step:2Groundwater-Flow Eqn.Solving:Stress period:364Time step:3Groundwater-Flow Eqn.Solving:Stress period:364Time step:1Groundwater-Flow Eqn.Solving:Stress period:364Time step:2Groundwater-Flow Eqn.Solving:Stress period:364Time step:2Groundwater-Flow Eqn.Solving:Stress period:365Time step:3Groundwater-Flow Eqn.Solving:Stress period:365Time step:1Groundwater-Flow Eqn.Solving:Stress period:365Time step:2Groundwater-Flow Eqn.Solving:Stress period:365Time step:2Groundwater-Flow Eqn.Solving:Stress period:366Time step:3Groundwater-Flow Eqn.Solving:Stress period:366Time step:1Groundwater-Flow Eqn.Solving:Stress period:366Time step:2Groundwater-Flow Eqn.Solving:Stress period:366Time step:2Groundwater-Flow Eqn.Solving:Stress period:366Time step:3Groundwater-Flow Eqn.Solving:Stress period:366Time step:3Groundwater-Flow Eqn.Solving:Stress period:366Time step:3Groundwater-Flow Eqn. <td></td> <td></td> <td>Solving:</td> <td>Stress</td> <td>period:</td> <td>362</td> <td>Time</td> <td>step:</td> <td>3</td> <td>Groundwater-Flow</td> <td>Eqn.</td>			Solving:	Stress	period:	362	Time	step:	3	Groundwater-Flow	Eqn.
Solving:Stress period:363Time step:2Groundwater-Flow Eqn.Solving:Stress period:364Time step:3Groundwater-Flow Eqn.Solving:Stress period:364Time step:2Groundwater-Flow Eqn.Solving:Stress period:364Time step:3Groundwater-Flow Eqn.Solving:Stress period:364Time step:3Groundwater-Flow Eqn.Solving:Stress period:365Time step:1Groundwater-Flow Eqn.Solving:Stress period:365Time step:2Groundwater-Flow Eqn.Solving:Stress period:365Time step:2Groundwater-Flow Eqn.Solving:Stress period:365Time step:2Groundwater-Flow Eqn.Solving:Stress period:365Time step:3Groundwater-Flow Eqn.Solving:Stress period:366Time step:3Groundwater-Flow Eqn.Solving:Stress period:366Time step:1Groundwater-Flow Eqn.Solving:Stress period:366Time step:2Groundwater-Flow Eqn.Solving:Stress period:366Time step:3Groundwater-Flow Eqn.Solving:Stress period:366Time step:3Groundwater-Flow Eqn.Solving:Stress period:366Time step:3Groundwater-Flow Eqn.Solving:Stress period:366Time step:3Groundwater-Flow Eqn. <td></td> <td></td> <td>Solving:</td> <td>Stress</td> <td>period:</td> <td>363</td> <td>Time</td> <td>step:</td> <td>1</td> <td>Groundwater-Flow</td> <td>Eqn.</td>			Solving:	Stress	period:	363	Time	step:	1	Groundwater-Flow	Eqn.
Solving: Stress period: 363 Time step: 3 Groundwater-Flow Eqn. Solving: Stress period: 364 Time step: 1 Groundwater-Flow Eqn. Solving: Stress period: 364 Time step: 2 Groundwater-Flow Eqn. Solving: Stress period: 364 Time step: 3 Groundwater-Flow Eqn. Solving: Stress period: 365 Time step: 1 Groundwater-Flow Eqn. Solving: Stress period: 365 Time step: 2 Groundwater-Flow Eqn. Solving: Stress period: 365 Time step: 3 Groundwater-Flow Eqn. Solving: Stress period: 365 Time step: 3 Groundwater-Flow Eqn. Solving: Stress period: 365 Time step: 3 Groundwater-Flow Eqn. Solving: Stress period: 366 Time step: 1 Groundwater-Flow Eqn. Solving: Stress period: 366 Time step: 2 Groundwater-Flow Eqn. Solving: Stress period: 366 Time step: 2 Groundwater-Flow Eqn. Solving: Stress period: 366 Time step: 3 Groundwater-Flow Eqn.			Solving:	Stress	period:	363	Time	step:	2	Groundwater-Flow	Eqn.
Solving:Stress period:364Time step:1Groundwater-Flow Eqn.Solving:Stress period:364Time step:2Groundwater-Flow Eqn.Solving:Stress period:364Time step:3Groundwater-Flow Eqn.Solving:Stress period:365Time step:1Groundwater-Flow Eqn.Solving:Stress period:365Time step:2Groundwater-Flow Eqn.Solving:Stress period:365Time step:2Groundwater-Flow Eqn.Solving:Stress period:365Time step:3Groundwater-Flow Eqn.Solving:Stress period:366Time step:1Groundwater-Flow Eqn.Solving:Stress period:366Time step:2Groundwater-Flow Eqn.Solving:Stress period:366Time step:2Groundwater-Flow Eqn.Solving:Stress period:366Time step:3Groundwater-Flow Eqn. <td></td> <td></td> <td>Solving:</td> <td>Stress</td> <td>period:</td> <td>363</td> <td>Time</td> <td>step:</td> <td>3</td> <td>Groundwater-Flow</td> <td>Eqn.</td>			Solving:	Stress	period:	363	Time	step:	3	Groundwater-Flow	Eqn.
Solving:Stress period:364Time step:2Groundwater-Flow Eqn.Solving:Stress period:364Time step:3Groundwater-Flow Eqn.Solving:Stress period:365Time step:1Groundwater-Flow Eqn.Solving:Stress period:365Time step:2Groundwater-Flow Eqn.Solving:Stress period:365Time step:3Groundwater-Flow Eqn.Solving:Stress period:365Time step:3Groundwater-Flow Eqn.Solving:Stress period:366Time step:1Groundwater-Flow Eqn.Solving:Stress period:366Time step:2Groundwater-Flow Eqn.Solving:Stress period:366Time step:3Groundwater-Flow Eqn.Solving:Stress period:366Time step:3Groundwater-Flow Eqn.Solving:Stress period:366Time step:3Groundwater-Flow Eqn.Solving:Stress period:366Time step:3Groundwater-Flow Eqn.Run end date and time (yyyy/mm/dd hh:mm:ss):2014/01/2621:06:19Elapsed run time:23.213Seconds			Solving:	Stress	period:	364	Time	step:	1	Groundwater-Flow	Egn.
Solving: Stress period: 364 Time step: 3 Groundwater-Flow Eqn. Solving: Stress period: 365 Time step: 1 Groundwater-Flow Eqn. Solving: Stress period: 365 Time step: 2 Groundwater-Flow Eqn. Solving: Stress period: 365 Time step: 3 Groundwater-Flow Eqn. Solving: Stress period: 366 Time step: 1 Groundwater-Flow Eqn. Solving: Stress period: 366 Time step: 2 Groundwater-Flow Eqn. Solving: Stress period: 366 Time step: 2 Groundwater-Flow Eqn. Solving: Stress period: 366 Time step: 3 Groundwater-Flow Eqn. Run end date and time (yyyy/mm/dd hh:mm:ss): 2014/01/26 21:06:19 Elapsed run time: 23.213 Seconds			Solving:	Stress	period:	364	Time	step:	2	Groundwater-Flow	Eqn.
Solving: Stress period: 365 Time step: 1 Groundwater-Flow Eqn. Solving: Stress period: 365 Time step: 2 Groundwater-Flow Eqn. Solving: Stress period: 365 Time step: 3 Groundwater-Flow Eqn. Solving: Stress period: 366 Time step: 1 Groundwater-Flow Eqn. Solving: Stress period: 366 Time step: 2 Groundwater-Flow Eqn. Solving: Stress period: 366 Time step: 3 Groundwater-Flow Eqn. Solving: Stress period: 366 Time step: 3 Groundwater-Flow Eqn. Run end date and time (yyyy/mm/dd hh:mm:ss): 2014/01/26 21:06:19 Elapsed run time: 23.213 Seconds			Solving:	Stress	period:	364	Time	step:	3	Groundwater-Flow	Eqn.
Solving: Stress period: 365 Time step: 2 Groundwater-Flow Eqn. Solving: Stress period: 365 Time step: 3 Groundwater-Flow Eqn. Solving: Stress period: 366 Time step: 1 Groundwater-Flow Eqn. Solving: Stress period: 366 Time step: 2 Groundwater-Flow Eqn. Solving: Stress period: 366 Time step: 3 Groundwater-Flow Eqn. Run end date and time (yyyy/mm/dd hh:mm:ss): 2014/01/26 21:06:19 Elapsed run time: 23.213 Seconds			Solving:	Stress	period:	365	Time	step:	1	Groundwater-Flow	Eqn.
Solving: Stress period: 365 Time step: 3 Groundwater-Flow Eqn. Solving: Stress period: 366 Time step: 1 Groundwater-Flow Eqn. Solving: Stress period: 366 Time step: 2 Groundwater-Flow Eqn. Solving: Stress period: 366 Time step: 3 Groundwater-Flow Eqn. Run end date and time (yyyy/mm/dd hh:mm:ss): 2014/01/26 21:06:19 Elapsed run time: 23.213 Seconds			Solving:	Stress	period:	365	Time	step:	2	Groundwater-Flow	Eqn.
Solving: Stress period: 366 Time step: 1 Groundwater-Flow Eqn. Solving: Stress period: 366 Time step: 2 Groundwater-Flow Eqn. Solving: Stress period: 366 Time step: 3 Groundwater-Flow Eqn. Run end date and time (yyyy/mm/dd hh:mm:ss): 2014/01/26 21:06:19 Elapsed run time: 23.213 Seconds			Solving:	Stress	period:	365	Time	step:	3	Groundwater-Flow	Eqn.
Solving: Stress period: 366 Time step: 2 Groundwater-Flow Eqn. Solving: Stress period: 366 Time step: 3 Groundwater-Flow Eqn. Run end date and time (yyyy/mm/dd hh:mm:ss): 2014/01/26 21:06:19 Elapsed run time: 23.213 Seconds			Solving:	Stress	period:	366	Time	step:	1	Groundwater-Flow	Eqn.
Solving: Stress period: 366 Time step: 3 Groundwater-Flow Eqn. Run end date and time (yyyy/mm/dd hh:mm:ss): 2014/01/26 21:06:19 Elapsed run time: 23.213 Seconds			Solving:	Stress	period:	366	Time	step:	2	Groundwater-Flow	Egn.
Run end date and time (yyyy/mm/dd hh:mm:ss): 2014/01/26 21:06:19 Elapsed run time: 23.213 Seconds			Solving:	Stress	period:	366	Time	step:	3	Groundwater-Flow	Eqn.
Elapsed run time: 23.213 Seconds			Run end d	ate and	time (yy	y/mm/dd	hh:mm	:ss):	2014/01/	26 21:06:19	
			Elapsed r	un time	: 23.213	Seconds					

Advanced Model Output

In the Solve tab, create MODFLOW input files, execute MODFLOW, and show Model results (see *Section 4.7. Advanced Model Output* for more information).

Search		General Setup Layers Name File Solve		
Scenario Cod	 Description 			
CR3_2009	NW_SW_Elev	1. Create MODFLOW Input Files	Edit Cell Zone Parameters	
CR3_2009	Elevations			
CR3_2010	2010Thornthwaite	I I	1	
CR3_2010	NW_SW_Elev	2. Execute MODFLOW	Edit Grid Zone Parameters	
		3. View MODFLOW Listing File 4. Show Advanced Model Output		
		C:\Wetbud\MODFLOW output\-CR3_2009.bas created C:\Wetbud\MODFLOW output\-CR3_2009.dis created C:\Wetbud\MODFLOW output\-CR3_2009.nwt created C:\Wetbud\MODFLOW output\-CR3_2009.cvt created C:\Wetbud\MODFLOW output\-CR3_2009.evt created C:\Wetbud\MODFLOW output\-CR3_2009.dvt created C:\Wetbud\MODFLOW output\-CR3_2009.dvt created C:\Wetbud\MODFLOW output\-CR3_2009.dvt created C:\Wetbud\MODFLOW output\-CR3_2009.dvt created C:\Wetbud\MODFLOW output\-CR3_2009.dvt created C:\Wetbud\MODFLOW output\-CR3_2009.dvt created C:\Wetbud\MODFLOW output\-CR3_2009.uvel created C:\Wetbud\MODFLOW output\-CR3_2009.cvc created C:\Wetbud\MODFLOW output\-CR3_2009.upw created C:\Wetbud\MODFLOW output\-CR3_2009.upw created C:\Wetbud\MODFLOW output\-CR3_2009.upw created C:\Wetbud\MODFLOW output\-CR3_2009.upw created	d I ed I I I I I I I I I I I I I I I I I	

Advanced Model Output - Head vs. Time Step

Advanced Model Output – Head along row

Advanced Model Output – Head along col

In the Advanced Model Output window, import results and generate charts in the output display tabs.

Output shown here not from CR3

Advanced Model Output - Mon. points

Advanced Model Output - Grids

Advanced Model Output		
ode 💌 Description 💌	Head vs Time Step Head along Row Head along Col Head at Mon. Points Grids	
R3_2009 NW_SW_Elev		
R3_2009 Elevations		
R3 2010 2010Thornthwaite		9 99 99 99 99 99 99
R3 2010 NW SW Elev	9 49 49 49 49 49 49 49 49 49 49 49 49 49	9 99 99 99 99 99 99
		5.55.55.55.55.55.55
		5.55.55.55.55.55.55 E EE EE EE EE EE
	99 99 99 99 99 99 99 99 99 99 99 99 99	5 55 55 55 55 55
	99 99 99 99 99 99 99 99 99 99 99 99 99	5.55.55.55.55.55
	99 99 99 99 99 99 99 99 99 99 99 99 99	5.55.55.55.55.55
	9 99 99 99 99 99 99 99 99 99 99 99 99 9	5.55.55.55.55.55
Charts Import Results	9 99 99 99 99 99 99 99 99 99 99 99 99 9	5.55.55.55.55.55
	9 99 99 99 99 99 99 99 99 99 99 99 99 9	5.55.55.55.55.55
ver	9 99 99 99 99 99 99 99 99 99 99 99 99 9	5.55.55.55.55.55
	9 99 99 99 99 99 99 99 99 99 99 56 55 55 55 55 55 55 55 55 55 55 55 55	5.55.55.55.55.55
	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	5.55.55.55.55.55
4 1		5.55.55.55.55.55.55 E EE EE EE EE EE
2W		5 55 55 55 55 55 55
		5 55 55 55 55 55 55
	99 99 99 99 99 99 99 99 99 99 99 99 99	5.55.55.55.55.55
1	99 99 99 99 99 99 99 99 99 99 99 99 99	5.55.55.55.55.55
olumn: 17/81	99 99 99 99 99 99 99 99 99 99 99 99 99	5.55.55.55.55.55
	9 99 99 99 99 99 99 99 99 99 99 99 99 55, 55,	5.55.55.55.55.55
	9 99 99 99 99 99 99 99 99 99 99 99 99 9	5.55.55.55.55.55
ime Step: 194/365	99 99 99 99 99 99 99 99 99 99 99 99 99	5.55.55.55.55.55
	99 99 99 99 99 99 99 99 99 99 99 99 95 55 5	5.55.55.55.55.55
	99 99 99 99 99 99 99 99 95 55 55 55 55 5	5.55.55.55.55.55
		5.55.55.55.55.55
		5 55 55 55 55 55 55
	99 99 99 99 99 99 99 99 99 99 99 99 99	5 55 55 55 55 55 55
	99 99 99 99 99 99 99 99 99 99 99 99 99	5.55.55.55.55.55
	9 99 99 99 99 99 99 99 99 99 55 55 55 55	5.55.55.55.55.55
	9 99 99 99 99 99 99 99 99 99 99 99 99 9	5.55.55.55.55.55
	99 99 99 99 99 99 99 99 99 99 99 99 99	5.55.55.55.55.55
	99 99 99 99 99 99 99 99 99 99 55 55 55 5	5.55.55.55.55.55
	99 99 99 99 99 99 99 99 95 55 55 55 55 5	5.55.55.55.55.55
	9 99 99 99 99 99 99 99 99 95 55 55 55 55	9 99 55.55.55.55
		5 55 55 55 55 55 55 55
Color Poolo	99 99 99 99 99 99 99 95 55 55 55 55 55 5	5 55 55 55 99 99
Color Scale	39 99 99 99 99 99 99 99 99 99 99 99 99 9	5.55.55.55.99 99
	9 99 99 99 99 99 99 99 99 99 99 99 56 55 55 55 55 55 55 55 55 55 55 55 55	5.55.55.55.99 99
	2 23 23 23 23 23 23 23 23 23 23 23 23 23	5 55 55 55 99 99
		+
		0
	1079 If Auto update If W/ Decimals If Color I Color No How Capture	Generate plot

Advanced Model Output - Grids

Advanced Model Output		
ode Description	Head vs Time Step Head along Row Head along Col Head at Mon. Points Grids	
R3_2009 NW_SW_Elev		
R3_2009 Elevations		
3_2010 2010Thornthwaite		3 99 99 99 99 99 99 99
3 2010 NW SW Elev		99 99 99 99 99 99 99 99
		5 55.00.00.00.00.00
		55 55 55 55 55 55 55
	99 99 99 99 99 99 99 99 99 99 99 99 99	55 55 55 55 55 55 55
	9 99 99 99 99 99 99 99 99 99 99 99 99 9	55, 55, 55, 55, 55, 55
	99 99 99 99 99 99 99 99 99 99 99 99 99	5.55.55.55.55.55.55
	9 99 99 99 99 99 99 99 99 99 99 99 99 9	5.55.55.55.55.55.55
Charts Import Results	99 99 99 99 99 99 99 99 99 99 99 99 99	5.55.55.55.55.55.55
	9 99 99 99 99 99 99 99 99 99 99 99 99 9	5.55.55.55.55.55.55
	9 99 99 99 99 99 99 99 99 99 99 99 99 9	5.55.55.55.55.55.55
/er	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	5.55.55.55.55.55.55
1	9 99 99 99 99 99 99 99 99 99 99 99 99 9	5.55.55.55.55.55.55
1. 1	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	5.55.55.55.55.55.55
w	99 99 99 99 99 99 99 99 99 99 99 99 99	5.55.55.55.55.55.55
	99 99 99 99 99 99 99 99 99 99 99 99 95 55 5	5.55.55.55.55.55.55
	99 99 99 99 99 99 99 99 99 99 99 99 55 55	55.55.55.55.55.55
มาการการการการการการการการการการการการการ		0.55.55.55.55.55.55
lumn: 17/81		. 55. 55. 55. 55. 55. 55. 55
-		. 55. 55. 55. 55. 55. 55. 55 C C C C C C C C C C C C C C C C C C
		55 55 55 55 55 55 55
		55 55 55 55 55 55 55
me Step: 194/365	99 99 99 99 99 99 99 99 99 99 99 99 99	55 55 55 55 55 55 55
	9 99 99 99 99 99 99 99 99 99 56 55 55 55 55 55 55 55 55 55 55 55 55	55.55.55.55.55.55
	9 99 99 99 99 99 99 99 99 99 99 56 55 55 55 55 55 55 55 55 55 55 55 55	5.55.55.55.55.55.55
	99 99 99 99 99 99 99 99 99 99 99 99 55 55	5.55.55.55.55.55.55
	99 99 99 99 99 99 99 99 99 99 99 99 55 55	5.55.55.55.55.55.55
	9 99 99 99 99 99 99 99 99 99 99 99 99 9	5.55.55.55.55.55.55
	99 99 99 99 99 99 99 99 99 99 55 55 55 5	5.55.55.55.55.55.55
	9 99 99 99 99 99 99 99 99 99 95 55 55 55	5.55.55.55.55.55.55
	99 99 99 99 99 99 99 99 99 99 99 99 99	55.55.55.55.55.55
	9 99 99 99 99 99 99 99 99 99 99 99 99 9	0.55.55.55.55.55.55.5t
		55.55.55.55.55.55.55
		0 00 00 EE EE EE EE
		aq qq qq qq qq qq
		55 55 55 99 99 99
Color Scala	99 99 99 99 99 99 99 99 55 55 55 55 99 99	5.55.55.55.55.99 99
	9 99 99 99 99 99 99 99 99 99 99 99 99 9	5.55.55.55.55.99 99
	9 99 99 99 99 99 99 99 99 99 99 56 55 55, 55 55 55 55 55 55 55 55 55 55 55	5.55.55.55.55.99 99
	22 23 23 23 23 23 23 23 23 23 23 23 23 2	5 55 55 55 55 99 99
		+
		Constants
	1079 V Auto Update V W/ Decimals V Color I Color No How Capture	Generate plot

Advanced Model Output - Grids

More to come after lunch...

...questions?