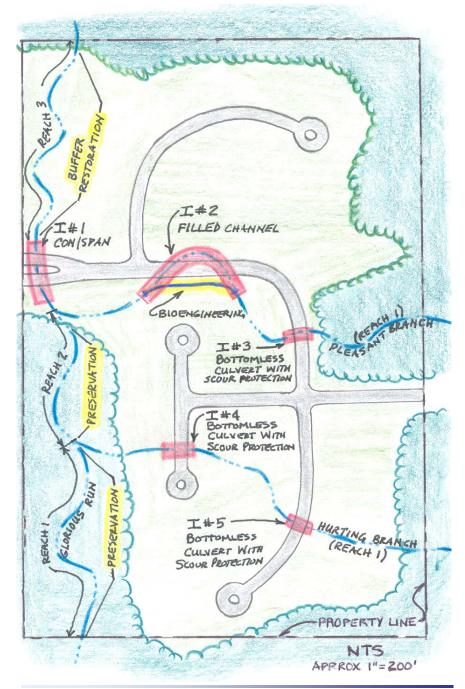
SECTION 5: PROJECT EXAMPLE

5.0	Project Examp	le	. 132
5.1	Example Estat	es	133
	Figure 5-1:	Site Plan of Example Estates	.133
	Completed	Field Forms (Stream Assessment Field Forms and	t
		Benthic Macroinvertebrate Worksheets)	138
	Form 1-2:	Summary of Stream Assessments	.148
	Form 2-1:	Impact Assessment Worksheet	. 150
	Form 3-1:	Stream Preservation Worksheet	.152
	Form 3-2:	Restoration Compensation Worksheet	.153
	Form 3-3a:	Weighted Drainage Area for Impacted Streams	
		(DA _{WI}) - Calculation Worksheet	. 154
	Form 3-3b:	Weighted Drainage Area for Stream	
		Compensation (DA _{WC}) - Calculation	
		Worksheet	. 154
	Form 3-4:	Stream Compensation Worksheet	155

5.0 PROJECT EXAMPLE

Project # 3042 Example Estates


The following application of the Stream Impact Assessment Methodology described in this Manual is provided for a hypothetical residential project to demonstrate the ease with which all required assessments (existing conditions, impacts, and compensation) can be quickly and easily performed.

As depicted on the opposite page, several streams are located on the property such that complete avoidance is not practicable. As a result, several types of impacts and associated compensation for those impacts are proposed.

This example shows the steps of assessing the stream reaches, calculating the value of the impacts, determining the value of the proposed compensation activities and determining if the proposed compensation is sufficient to mitigate for the proposed impacts.

Photographs of each stream reach are provided, along with a completed stream assessment form for each reach, so you can employ the assessment method and compare your results with our determination. Impacts and compensation are similarly depicted and assessed for your use in this example.

5.1 EXAMPLE ESTATES FIGURE 5-1: SITE PLAN OF EXAMPLE ESTATES

GLORIOUS RUN - REACH 1: This reach has an optimal channel condition, riparian buffer, and in-stream habitat; good benthos, and channel alteration is negligible/none.

GLORIOUS RUN - REACH 2: This reach has a marginal channel condition; riparian buffer and in-stream habitat are optimal; fair benthos, and channel alteration is negligible/none.

GLORIOUS RUN - REACH 3: This reach has a marginal channel condition, in-stream habitat, and riparian buffer; poor benthos, and channel alteration is negligible/none.

PLEASANT BRANCH - REACH 1: This reach has an optimal channel condition, suboptimal riparian buffer; marginal in-stream habitat; poor benthos, and channel alteration is negligible/none.

HURTING BRANCH - REACH 1: This reach has a poor channel condition, suboptimal riparian buffer; marginal in-stream habitat; good benthos, and channel alteration is negligible/none.

NOTES:

Project Example Version 1.3

FORM 1-1: STREAM ASSESSMENT FIELD FORM Project #: 3042-EXAMPLE ESTATES Date: 03/28/2005 Stream Name: GLORIOUS RUN - R1 Team: MSM, SRP, KLS A Man-Made Channels. (Use the assigned RCI) 1. Piped Channel 0.25 2. Open Channel - concrete 3. Open Channel - gabions, riprap 0.50 4. Open Channel - naturalized apply Natural Channel Methodology Natural Channel Methodology Evaluate the following parameters using the definitions provided, Sections 1.2.1 - 1.2.4. 1. Channel Condition 3. In-Stream Habitat 5. Channel **Alterations** O Severe O Poor O Severe O Poor O Marginal O Moderate Optimal O Marginal O Minor O Suboptimal 4. Benthic Condition Negligible/ Optimal O Poor None O Fair 2. Riparian Buffer O Poor ⊗ Good O Marginal Benthic Condition Source O Suboptimal Optimal O Site Observation (refer to benthic condition worksheet) Reach Condition Index (RCI) After evaluating the parameters, use the Reach Flow Charts (pages 48 - 67) to determine the RCI. Reach Condition Index (RCI) (0-6) __6O__ D Other Required Information Reach Length: 525 (feet) 225 Drainage Area: (acres) Summarize the RCI information for each assessment reach in FORM 1-2.

FORM B-1: BENTHIC MACROINVERTEBRATE WORKSHEET

Date: 03/28/2005

Project #: 3042-EXAMPLE ESTATES

Taxa	Number	Taxa	Number
Eccoptura s p.	5	Crangonyx sp.	12
Amphinemoura sp.	7	Lirceus sp.	8
Baetis sp.	2	Viviparus sp.	4
Drunella sp.	3	Sphaerium sp.	2
Hydropsyche sp.	10	Chironomidae	15
Pycnopsyche sp.	4	Tipula sp.	8
Neophylax sp.	8		
Corydalus sp.	2		
Boyeria sp.	3		
Calopteryx sp.	1		
Psephenus sp.	6		
Total Number of Ta: Total Number of Be Macroinvertebrates	nthic	Test Metrics	/Indices:
0	Poor	Benthic Conditi O Poor O Fair O Good	on
benthic condition pa		ther than default tat parameter), exp	lain here:

FORM 1-1: STREAM ASSESSMENT FIELD FORM

	ESTATES Date: 03/28/2005				
	PUN - R2 Team: MSM, SRP, KLS				
A Man-Made Channels 1. Piped Channel 2. Open Channel - concre 3. Open Channel - gabion 4. Open Channel - natural	ns, riprap 0.50				
B Natural Channel Me Evaluate the following paral Sections 1.2.1 - 1.2.4.	ethodology meters using the definitions provided in				
O Severe O Poor Narginal O Suboptimal O Optimal 2. Riparian Buffer O Poor O Marginal O Suboptimal O Suboptimal O Optimal C Reach Condition Inc. After evaluating the parame (pages 48 - 67) to determine	eters, use the Reach Flow Charts				
D Other Required Info	rmation				
Reach Length: 350	(feet)				
Drainage Area : 400	(acres)				
Summarize the RCI information for each assessment reach in FORM 1-2.					

FORM B-1: BENTHIC MACROINVERTEBRATE WORKSHEET

h No.:	Team: <u>MSI</u>	M, SRP, KLS
Number	Taxa	Number
6		
5		
9		
13		
9		
3		
8		
5		
11		
23		
13		
Benthic	Test Metric	es/Indices:
m Habitat Poor	O Poor	tion
•		1
		plain here:
	5 9 15 9 15 9 15 17 8 8 5 11 23 15 Faxa (T) 11 8enthic es (N) 94 m Habitat Poor Marginal Optimal parameter is oth	5 9 13 9 13 9 3 8 5 11 23 13 Test Metric Senthic Ses (N) 94

FORM 1-1: STREAM ASSESSMENT FIELD FORM

Project #: 3042-EXAMPLE ESTATES Date: 03/28/2005					
Stream Name: GLORIOUS RUN - R3 Team: MSM, SRP, KLS					
A Man-Made Channels. (Use the assigned RCI) 1. Piped Channel 0 2. Open Channel - concrete 0.25 3. Open Channel - gabions, riprap 0.50 4. Open Channel - naturalized apply Natural Channel Methodology					
B Natural Channel Methodology Evaluate the following parameters using the definitions provided, Sections 1.2.1 - 1.2.4.					
1. Channel Condition 3. In-Stream Habitat 5. Channel O Severe O Poor Alteration					
 Poor Marginal Optimal Suboptimal Optimal Suboptimal Optimal Moderate Minor Negligible/None Negligible/None Poor Marginal Suboptimal Optimal Site Observation (refer to benthic condition worksheet) C Reach Condition Index (RCI) After evaluating the parameters, use the Reach Flow Charts (pages 48 - 67) to determine the RCI. Reach Condition Index (RCI) (0 - 6) = 2.2 					
Other Required Information					
Reach Length:550_ (feet)					
Drainage Area : 625 (acres)					
Summarize the RCI information for each assessment reach in FORM 1-2.					

FORM B-1: BENTHIC MACROINVERTEBRATE WORKSHEET

Project #: 3042 -EXAMi	PLEESTATE	5 Date: 03/2	8/2005
Stream Name/Reach N	0.:	Team: <i>M5M</i>	, SRP, KLS
GLORIOUS RUN - R3			
Taxa	Number	Taxa	Number
Cheumatopsyche sp.	33		
Oligochaeta	41		
Chironomidae	65		
Corbicula sp.	17		
Total Number of Taxa (Total Number of Benthi Macroinvertebrates (N)	C	Test Metrics/li (T) + (EPT) % EPT Taxa % Chironomidae	02 = 5 = 21%
		Benthic Conditio	n
	-	O Good	
If benthic condition part (i.e. corresponding in-s			lain here:

FORM 1-1: STREAM ASSESSMENT FIELD FORM

Project #: 3042 -EXAMPLE ESTATES Date: 03/28/2005					
Stream Name: PLEASANT BRANCH Team: MSM, SRP, KLS					
A Man-Made Channels. (Use the assigned RCI) 1. Piped Channel 0 2. Open Channel - concrete 0.25 3. Open Channel - gabions, riprap 0.50 4. Open Channel - naturalized apply Natural Channel Methodology					
B Natural Channel Methodology Evaluate the following parameters using the definitions provided, Sections 1.2.1 - 1.2.4.					
1. Channel Condition 3. In-Stream Habitat 5. Channel					
O Severe O Poor Alteration					
O Poor O Marginal O Severe O Marginal Ø Optimal O Modera					
o opima	iie				
O SuboptimalO Minor⊗ Optimal4. Benthic ConditionO Minor⊗ Negligion	hle/				
Optimal Poor None	010,				
2. Riparian Buffer O Fair					
O Poor O Good					
O Marginal Benthic Condition Source					
Suboptimal Default					
O Optimal Site Observation (refer to benthic condition worksheet)					
C Reach Condition Index (RCI) After evaluating the parameters, use the Reach Flow Charts (pages 48 - 67) to determine the RCI. Reach Condition Index (RCI) (0 - 6) = 4.7					
D Other Required Information					
Reach Length: 1000 (feet)					
Drainage Area : 200 (acres)					
Summarize the RCI information for each assessment reach in FORM 1-2.					

FORM B-1: BENTHIC MACROINVERTEBRATE WORKSHEET

Taxa	Number	Taxa	Number
Tydropsyche sp.	33		
Oligochaeta	42		
Dhironomid <i>ae</i>	85		
Total Number o	f Taxa (T) <u>5</u>	Test Metr	ics/Indices:
Total Number of Macroinvertebra			
	eam Habitat O Poor		
	O Marginal		
	⊗ Optimal	O God	od
benthic condition e. corresponding			olain here:

FORM 1-1: STREAM ASSESSMENT FIELD FORM Project #: 3042-EXAMPLE ESTATES Date: 03/28/2005					
Stream Name: HURTING BRANCH Team: MSM, SRP, KLS					
A Man-Made Cha	nnels. (U	se the assigned	I RCI)		
 Piped Channel 			0		
2. Open Channel - co			0.25		
3. Open Channel - ga			0.50		
4. Open Channel - na	aturalized		atural Ch thodolog		
B Natural Channe Evaluate the following p Sections 1.2.1 - 1.2.4.			nitions pi	rovided,	
1. Channel Condition			5. Chann		
O Severe	_	Poor		ation	
⊗ Poor	0	Marginal		Severe Moderate	
O Marginal	0	Optimal		Minor	
O Suboptimal O Optimal	4. Benth	ic Condition	⊗		
О Оритат		Poor	0	None	
2. Riparian Buffer	0	Fair			
O Poor	⊗	Good			
O Marginal	Benthi	c Condition Sou	ırce		
Suboptimal		Default			
Optimal	8				
		benthic condit	ion work	sneet)	
C Reach Condition Index (RCI) After evaluating the parameters, use the Reach Flow Charts (pages 48 - 67) to determine the RCI.					
Reach Condi	tion Inde	(RCI) (0-6)	= _3;	5	
D Other Required	Informatio	on			
Reach Length:82	25 (fe	eet)			
Drainage Area :15	<u>O</u> (a	cres)			
Summarize the RCI information for each assessment reach in FORM 1-2.					

FORM B-1: BENTHIC MACROINVERTEBRATE WORKSHEET

Pro	oject # : <i>3042 -EXAMPL</i>	EESTATES	Date: 05/28/	12005		
Str	eam Name/Reach No.	:	Team: <i>MSM, S</i>	5RP,KLS		
HU	RTING BRANCH					
	Taxa	Number	Taxa	Number		
	Taeniopteryx sp.	10	Crangonyx sp.	11		
	Peltoperla sp.	15	Lirceus sp.	7		
	Ephemera sp.	6	Ferissa sp.	4		
	Drunella sp.	8	Sphaerium sp.	2		
	Stenonema sp.	10	Chironomidae	7		
	Triaenodes sp.	2	Tipula sp.	3		
	Molanna sp.	1	Oligochaeta	5		
	Corydalus sp.	2				
	Nepa эр.	1				
	Calopteryx sp.	2				
	Psepherus sp.	8				
Total Number of Taxa (T) <u>18</u> Total Number of Benthic Macroinvertebrates (N) <u>104</u> Test Metrics/Indices:						
If i	O M	oor arginal otimaL	× • Good	on		
(i.e. The mon	e. corresponding in-str ne Virginia Depatment of Envi nitoring data shows that this si ood". Additionally, this stream luding representatives from 18 sour opinion that this stream h ervoir breach degraded the in-	eam habitat ronmental Qualit tream has a St m reach support taxa, several of nas good benthi	parameter), explai ly's (VDEQ) biological eam Condition Index (SC ed a diverse macroinverte which are pollution sense	water quality Ol) rating of ebrate community, itive. Therefore,		

FORM 1-2: SUMMARY OF STREAM ASSESSMENTS

Project #: 3042-EXAMPLE ESTATES Date: 03/28/2005

Team: MSM, SRP, KLS

Stream Name	Reach Name	Drainage Area DA	Length L	RCI
		(acres)	(feet)	
GLORIOUS RUN	1	225	525	6,0
	2	400	350	4.0
	3	625	550	2,2
PLEASANT BRANCH	1	200	1000	4.7
HURTING BRANCH	1	150	825	3.5

IMPACT 1 - Conspan with a natural stream bed and only temporary impacts during construction.

IMPACTS 3, 4, 5 - Bottomless culverts with scour protection.

FORM 2-1: IMPACT ASSESSMENT WORKSHEET

Project #: 3042-EXAMPLE ESTATES Date: 03/28/2005

Team: MSM, SRP, KLS

IMPACT#	Drainage Area DA	RCI	Impact Factor IF	Length L _I	Impacts I
		(A)	(B)	(C)	I = A * B * C
	(acres)			(feet)	(SCUs)
1-CON/SPAN	600	2,2	0.25	140	77
2-FILL CHANNEL	200	4.7	1,00	300	1410
3-BOTTOMLESS	175	4.7	1,00	65	305,5
4-BOTTOMLESS	150	3.5	1.00	60	210
5-BOTTOMLESS	125	3,5	1.00	55	192,5
		TOTA	L IMPACT	S (I _T) ¹ =	2195

¹ Total Impacts (I_T) = Total Required Mitigation Credits.

RESTORATION 1 - Riparian buffer restoration with the removal of invasive species, deep disking, and replanting with native plant stock.

RESTORATION 2 - Bioengineering and relocation of an Urban/suburban stream.

FORM 3-1: STREAM PRESERVATION WORKSHEET

Project #: 3042-EXAMPLE ESTATES Date: 03/28/2005

Team : MSM, SRP, KLS

Stream/Reach Name	Drainage Area DA	RCI	PF	Length L _P	Mitigation Credits P _R = RCI x PF x L _P
	(acres)			(feet)	(SCU)
GLORIOUS RUN -RI	225	6.0	0.05	525	157.5
GLORIOUS RUN -R2	400	4,0	0.03	350	42
	TOTAL	PRES	ERVAT	ION	1005

TOTAL PRESERVATION MITIGATION CREDITS $(P_T) =$

199,5

FORM 3-2: RESTORATION COMPENSATION SUMMARY WORKSHEET

Project #: 3042-EXAMPLE ESTATES Date: 03/28/2005

Team: M5M, 5RP, KL5

Stream/Reach Name	Restoration Type	Drainage Area	RF_T	Length	Restoration Credits
		DA		L_R	$S_R = RF_T \times L_R$
		(acres)		(feet)	(SCU)
1 - GLORIOU5 - R3	REMOVE NON- NATVE, DISK, SEED,TREES/ SHRUBS	625	1.25	550	687.5
2-PLEASANT -RI	BIOENGINEER BANK STABILIZATION	200	4,5	225	1012,5
	TOTAI	L RESTOR	ATION	l (S _T) =	1700

Project #: 3042 - EXAMPLE ESTATES

Date: 03/28/2005

FORM 3-3a: WEIGHTED DRAINAGE AREAS FOR IMPACTED STREAMS (DA_{WI}) - CALCULATION WORKSHEET

Stream/Reach Name	Impact #	Length	Drainage Area	DA*L _I
		L	DA	
		(feet)	(acres)	(ft-ac)
GLORIOUS RUN - R3	1	140	600	84,000
PLEASANT BRANCH - RI	2	300	200	60,000
PLEASANT BRANCH - RI	3	65	175	11,375
HURTING BRANCH - RI	4	60	150	9,000
HURTING BRANCH - RI	5	55	125	6,875
	Σ (L_1) =	620		ţ
$\Sigma (DA * L_1)$ $\Sigma (DA * L_1) =$			171,250	
$DA_{WI} = \frac{\sum L_I}{\sum L_I}$	<u></u>	270	6,2 acre	S

FORM 3-3b: WEIGHTED DRAINAGE AREA FOR STREAM COMPENSATION ($\mathsf{DA}_{\mathsf{WC}}$) - CALCULATION WORKSHEET

Stream/Reach Name	Restoration Type	Length ^a	Drainage Area	DA* L
		L _P or L _R	DA	
		(feet)	(acres)	(ft-ac)
GLORIOUS RUN - R3	PLANTING	550	625	343,750
PLEASANT BRANCH -RI	N.C.D. W/O STRUCTURES	225	200	45,000
GLORIOUS RUN -RI	PRESERVATION	525	225	118,125
GLORIOUS RUN - R2	PRESERVATION	325	400	130,000
	Σ (L) =	1625		ļ
Σ(DA	Σ (D	A _{wc} * L) =	636,875	

^a Use applicable Length of Restoration or Length of Preservation

154

Additional SCUs Required _____ SCUs (if $C_{WT} - I_T < 0$)

Surplus SCUs Provided: 480 SCUs (if $C_{WT} - I_T > 0$)

NOTES: